Machine Learning-based Virtual Screening for STAT3 Anticancer Drug Target

药物发现 车站2 随机森林 虚拟筛选 计算生物学 计算机科学 癌症研究 朴素贝叶斯分类器 车站3 机器学习 生物 生物信息学 信号转导 STAT蛋白 支持向量机 细胞生物学
作者
Abdul Wadood,Amar Ajmal,Muhammad Junaid,Ashfaq Ur Rehman,Reaz Uddin,Syed Sikander Azam,Alam Zeb Khan,Asad Ali
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:28 (36): 3023-3032 被引量:23
标识
DOI:10.2174/1381612828666220728120523
摘要

Signal transducers and activators of the transcription (STAT) family is composed of seven structurally similar and highly conserved members, including STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. The STAT3 signaling cascade is activated by upstream kinase signals and undergoes phosphorylation, homo-dimerization, nuclear translocation, and DNA binding, resulting in the expression of target genes involved in tumor cell proliferation, metastasis, angiogenesis, and immune editing. STAT3 hyperactivation has been documented in a number of tumors, including head and neck, breast, lung, liver, kidney, prostate, pancreas cancer, multiple myeloma, and acute myeloid leukemia. Drug discovery is a timeconsuming and costly process; it may take ten to fifteen years to bring a single drug to the market. Machine learning algorithms are very fast and effective and commonly used in the field, such as drug discovery. These algorithms are ideal for the virtual screening of large compound libraries to classify molecules as active or inactive.The present work aims to perform machine learning-based virtual screening for the STAT3 drug target.Machine learning models, such as k-nearest neighbor, support vector machine, Gaussian naïve Bayes, and random forest for classifying the active and inactive inhibitors against a STAT3 drug target, were developed. Ten-fold cross-validation was used for model validation. Then the test dataset prepared from the zinc database was screened using the random forest model. A total of 20 compounds with 88% accuracy was predicted as active against STAT3. Furthermore, these twenty compounds were docked into the active site of STAT3. The two complexes with good docking scores as well as the reference compound were subjected to MD simulation. A total of 100ns MD simulation was performed.Compared to all other models, the random forest model revealed better results. Compared to the standard reference compound, the top two hits revealed greater stability and compactness.In conclusion, our predicted hits have the ability to inhibit STAT3 overexpression to combat STAT3-associated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hohokuz完成签到,获得积分10
1秒前
活力妙芙完成签到,获得积分10
1秒前
HM发布了新的文献求助10
2秒前
尊敬亦寒发布了新的文献求助10
2秒前
所所应助嘻嘻采纳,获得10
2秒前
zjhzslq完成签到,获得积分10
3秒前
3秒前
大知闲闲完成签到 ,获得积分10
3秒前
jibo发布了新的文献求助10
4秒前
月亮完成签到 ,获得积分10
6秒前
mingqiao7发布了新的文献求助30
7秒前
7秒前
momo完成签到,获得积分10
7秒前
Kkyantong发布了新的文献求助10
8秒前
for_abSCI完成签到,获得积分10
14秒前
15秒前
青青完成签到 ,获得积分10
15秒前
xmz应助一直都不想上班采纳,获得10
16秒前
18秒前
18秒前
琴楼完成签到,获得积分10
19秒前
Andrew完成签到,获得积分10
19秒前
111完成签到,获得积分10
20秒前
张若旸完成签到 ,获得积分10
21秒前
22秒前
无限安蕾完成签到,获得积分10
23秒前
求知的周完成签到,获得积分10
23秒前
英姑应助Kkyantong采纳,获得10
23秒前
24秒前
25秒前
PWG完成签到,获得积分10
25秒前
嘻嘻发布了新的文献求助10
26秒前
VT完成签到,获得积分10
26秒前
27秒前
Huay完成签到 ,获得积分10
27秒前
酸奶烤着吃完成签到,获得积分10
28秒前
追风完成签到,获得积分20
29秒前
luckweb完成签到,获得积分10
30秒前
DaSheng发布了新的文献求助10
30秒前
鼓励男孩完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782897
求助须知:如何正确求助?哪些是违规求助? 3328185
关于积分的说明 10235295
捐赠科研通 3043240
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759033