Optimal design of γʹ-strengthened high-entropy alloys via machine learning multilayer structural model

高熵合金 材料科学 体积分数 微观结构 熵(时间箭头) 相(物质) 机械工程 热力学 冶金 复合材料 工程类 物理 化学 有机化学
作者
Weijie Liu,Chenglei Wang,Chaojie Liang,Junfeng Chen,Hong‐Wei Tan,Jijie Yang,Mulin Liang,Xin Li,Chong Liu,Mei Huang,Xingjun Liu
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:871: 144852-144852 被引量:9
标识
DOI:10.1016/j.msea.2023.144852
摘要

γʹ-strengthened high-entropy alloys (HEAs) have been widely studied in recent years because of their excellent mechanical properties at room- and elevated-temperature. The element diversity of HEAs leads to its vast composition and preparation process space and accelerating the design of γʹ-strengthened HEAs by determining phase and mechanical properties remains a prominent challenge. In this study, by building a multi-layer structure prediction model, which includes accurate prediction models of microstructure and mechanical property, aiming to find HEAs with γʹ phase high-volume fraction and high strength. Four γʹ-strengthened alloys were selected from 800,000 candidate alloys by the multilayer structural prediction model, and then it was verified that all four HEAs have a high γʹ phase volume fraction and high strength by experiment. Furthermore, the mathematical relationship between the different metal elements, heat treatment processes, and γ′ phase volume fraction by resolving the machine learning model with the shapely additive algorithm (SHAP). A mathematical relationship model for the strengthening mechanism of HEAs was established to analyze the strengthening relationship of different strengthening mechanisms. The multilayer structural model can be used for the efficient design of γʹ-strengthened high-entropy alloys, and analyze multiple potential relationships that influence the properties of alloys through the underlying data of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二二二发布了新的文献求助10
1秒前
2秒前
夜夜发布了新的文献求助10
3秒前
酷酷凤灵发布了新的文献求助10
5秒前
livrese发布了新的文献求助10
5秒前
5秒前
5秒前
Joel发布了新的文献求助10
6秒前
6秒前
Orange应助吴wu采纳,获得10
6秒前
study666发布了新的文献求助10
6秒前
清风完成签到,获得积分10
8秒前
航迹云的彼方完成签到,获得积分10
8秒前
852应助冷寻非采纳,获得10
8秒前
激昂的映容完成签到 ,获得积分10
9秒前
10秒前
10秒前
ZSQ完成签到,获得积分10
10秒前
赫赫发布了新的文献求助10
10秒前
ZYQ发布了新的文献求助30
11秒前
SYLH应助小荣同学采纳,获得30
11秒前
SYLH应助沐风采纳,获得20
12秒前
bubble嘞完成签到 ,获得积分10
13秒前
Weiweiweixiao完成签到,获得积分10
13秒前
笨笨的蜡烛完成签到,获得积分10
13秒前
清风发布了新的文献求助10
15秒前
15秒前
万能图书馆应助livrese采纳,获得10
15秒前
16秒前
16秒前
yw完成签到,获得积分10
16秒前
李演员完成签到,获得积分10
17秒前
梁英俊完成签到 ,获得积分10
17秒前
脑洞疼应助忧心的振家采纳,获得10
17秒前
ZXW发布了新的文献求助50
18秒前
在水一方应助Lucas采纳,获得10
18秒前
Accept完成签到,获得积分10
18秒前
cheng发布了新的文献求助10
20秒前
愉悦发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933850
求助须知:如何正确求助?哪些是违规求助? 3479150
关于积分的说明 11003883
捐赠科研通 3208941
什么是DOI,文献DOI怎么找? 1773427
邀请新用户注册赠送积分活动 860410
科研通“疑难数据库(出版商)”最低求助积分说明 797656