Contrastive Learning Based Graph Convolution Network for Social Recommendation

计算机科学 图形 利用 理论计算机科学 推荐系统 人工智能 特征学习 粒度 机器学习 自然语言处理 计算机安全 操作系统
作者
Jiabo Zhuang,Shunmei Meng,Jing Zhang,Victor S. Sheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (8): 1-21 被引量:8
标识
DOI:10.1145/3587268
摘要

Exploiting social networks is expected to enhance the performance of recommender systems when interaction information is sparse. Existing social recommendation models focus on modeling multi-graph structures and then aggregating the information from these multiple graphs to learn potential user preferences. However, these methods often employ complex models and redundant parameters to get a slight performance improvement. Contrastive learning has been widely researched as an effective paradigm in the area of recommendation. Most existing contrastive learning-based models usually focus on constructing multi-graph structures to perform graph augmentation for contrastive learning. However, the effect of graph augmentation on contrastive learning is inconclusive. In view of these challenges, in this work, we propose a contrastive learning based graph convolution network for social recommendation (CLSR), which integrates information from both the social graph and the interaction graph. First, we propose a fusion-simplified method to combine the social graph and the interaction graph. Technically, on the basis of exploring users’ interests by interaction graph, we further exploit social connections to alleviate data sparsity. By combining the user embeddings learned through two graphs in a certain proportion, we can obtain user representation at a finer granularity. Meanwhile, we introduce a contrastive learning framework for multi-graph network modeling, where we explore the feasibility of constructing positive and negative samples of contrastive learning by conducting data augmentation on embedding representations. Extensive experiments verify the superiority of CLSR’s contrastive learning framework and fusion-simplified method of integrating social relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiwi完成签到 ,获得积分10
刚刚
无情雨双完成签到,获得积分10
刚刚
从容映易完成签到,获得积分10
1秒前
乐观的眼睛完成签到,获得积分10
1秒前
leo完成签到,获得积分10
1秒前
xingxing发布了新的文献求助10
1秒前
Yuciyy完成签到,获得积分10
2秒前
xinyu发布了新的文献求助10
3秒前
稳重完成签到 ,获得积分10
3秒前
机械师简完成签到,获得积分20
4秒前
李健应助顺利的愫采纳,获得10
4秒前
rongrong12完成签到,获得积分10
4秒前
zyn完成签到 ,获得积分10
4秒前
雪隐完成签到,获得积分10
4秒前
HEIKU应助林狗采纳,获得10
4秒前
芝士完成签到,获得积分10
5秒前
5秒前
钱多多完成签到,获得积分10
6秒前
akz完成签到,获得积分20
6秒前
晨曦完成签到,获得积分10
6秒前
6秒前
血影完成签到,获得积分10
6秒前
伶俐如冰完成签到,获得积分10
7秒前
Huang完成签到,获得积分10
7秒前
LZ完成签到,获得积分10
8秒前
8秒前
8秒前
yyy完成签到,获得积分10
8秒前
serina完成签到 ,获得积分10
8秒前
8秒前
xbo完成签到,获得积分10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得30
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369790
关于积分的说明 10457969
捐赠科研通 3089470
什么是DOI,文献DOI怎么找? 1699905
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263