Contrastive Learning Based Graph Convolution Network for Social Recommendation

计算机科学 图形 利用 理论计算机科学 推荐系统 人工智能 特征学习 粒度 机器学习 自然语言处理 计算机安全 操作系统
作者
Jiabo Zhuang,Shunmei Meng,Jing Zhang,Victor S. Sheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (8): 1-21 被引量:8
标识
DOI:10.1145/3587268
摘要

Exploiting social networks is expected to enhance the performance of recommender systems when interaction information is sparse. Existing social recommendation models focus on modeling multi-graph structures and then aggregating the information from these multiple graphs to learn potential user preferences. However, these methods often employ complex models and redundant parameters to get a slight performance improvement. Contrastive learning has been widely researched as an effective paradigm in the area of recommendation. Most existing contrastive learning-based models usually focus on constructing multi-graph structures to perform graph augmentation for contrastive learning. However, the effect of graph augmentation on contrastive learning is inconclusive. In view of these challenges, in this work, we propose a contrastive learning based graph convolution network for social recommendation (CLSR), which integrates information from both the social graph and the interaction graph. First, we propose a fusion-simplified method to combine the social graph and the interaction graph. Technically, on the basis of exploring users’ interests by interaction graph, we further exploit social connections to alleviate data sparsity. By combining the user embeddings learned through two graphs in a certain proportion, we can obtain user representation at a finer granularity. Meanwhile, we introduce a contrastive learning framework for multi-graph network modeling, where we explore the feasibility of constructing positive and negative samples of contrastive learning by conducting data augmentation on embedding representations. Extensive experiments verify the superiority of CLSR’s contrastive learning framework and fusion-simplified method of integrating social relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
李爱国应助moon采纳,获得10
2秒前
2秒前
桐桐应助江海下百川采纳,获得10
3秒前
3秒前
李健应助Aline采纳,获得10
3秒前
兜里全是糖完成签到,获得积分10
4秒前
朴素笑卉关注了科研通微信公众号
5秒前
banbieshenlu发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
优雅莞发布了新的文献求助10
7秒前
微笑的可乐完成签到,获得积分10
8秒前
懦弱的冰岚完成签到 ,获得积分10
9秒前
wangli发布了新的文献求助10
9秒前
anzy0316完成签到 ,获得积分10
9秒前
10秒前
10秒前
造梦完成签到 ,获得积分10
11秒前
exosome发布了新的文献求助10
11秒前
惊蛰发布了新的文献求助10
11秒前
11秒前
14秒前
14秒前
雯雯完成签到,获得积分10
14秒前
czj发布了新的文献求助20
15秒前
Aline发布了新的文献求助10
15秒前
虚拟的烙发布了新的文献求助10
17秒前
KK完成签到,获得积分20
17秒前
liu应助李某某采纳,获得10
19秒前
不知道发布了新的文献求助10
19秒前
keroro完成签到,获得积分10
20秒前
桐桐应助专注纹采纳,获得10
20秒前
21秒前
22秒前
YH完成签到,获得积分10
23秒前
Jasper应助77采纳,获得10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4214814
求助须知:如何正确求助?哪些是违规求助? 3749052
关于积分的说明 11793571
捐赠科研通 3415364
什么是DOI,文献DOI怎么找? 1874278
邀请新用户注册赠送积分活动 928461
科研通“疑难数据库(出版商)”最低求助积分说明 837628