Bilayer Heterostructured Ni3S2@Ta-NiFe LDH Cross-Linked Nanosheets for Efficient Oxygen Evolution Reaction

材料科学 双层 析氧 氧气 纳米颗粒 化学工程 纳米技术 无机化学 物理化学 冶金 电化学 电极 有机化学 化学 遗传学 工程类 生物
作者
Zhaoying Yang,Xinge Wu,Wenzhu Tan,Chao Li,Shuai Shao,Xiangying Meng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c10243
摘要

Transition metal layered double hydroxides (LDHs) are effective electrode materials that can address the sluggish kinetics of the oxygen evolution reaction (OER) at the anode during electrocatalytic hydrogen generation from water, but the application of LDHs is expected to make a breakthrough toward high conductivity and stability. In this study, Ni3S2 and Ta-doped NiFe LDH composite cross-linked nanosheets were grown on nickel foam (Ni3S2@Ta-NiFe LDH/NF). The optimized material exhibited a significantly increased specific surface area, along with excellent OER performance and stability. At 50 and 100 mA cm-2 in 1 M KOH, the overpotentials are 188.5 and 203.4 mV, respectively, markedly below RuO2/NF's 300.6 and 339 mV. The material demonstrates excellent durability, maintaining stable performance for 50 h. The high conductivity and stability are further confirmed in the Pt/C and Ni3S2@Ta-NiFe LDH-based two-electrode system with excellent activity (1.472 V at 10 mA cm-2) and sustained durability. Density functional theory (DFT) calculations reveal that the heterostructure of Ni3S2 and Ta-NiFe LDH facilitates interfacial charge transfer, thus improving conductivity. Simultaneously, the electron-deficient state of the metal site weakens the strong adsorption of OER intermediates and accelerates OER kinetics. This work offers fresh perspectives on LDH electrocatalyst design and advances sustainable, cost-effective hydrogen production technology, marked by enhanced efficiency and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夷灭发布了新的文献求助10
刚刚
1秒前
田様应助顺心问薇采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
Confocal练习生完成签到,获得积分10
4秒前
小毛线发布了新的文献求助10
4秒前
4秒前
peanut完成签到,获得积分10
5秒前
FR完成签到,获得积分10
6秒前
6秒前
烤包子完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
白衣映雪完成签到,获得积分10
8秒前
8秒前
proton完成签到,获得积分10
9秒前
FashionBoy应助Sitong采纳,获得10
9秒前
9秒前
Orange应助qwerty123456采纳,获得10
9秒前
你说发布了新的文献求助10
10秒前
10秒前
10秒前
李健应助夷灭采纳,获得10
11秒前
11秒前
KerwinLLL发布了新的文献求助10
11秒前
11秒前
搜集达人应助lk采纳,获得10
11秒前
fulang关注了科研通微信公众号
11秒前
打打应助科研人采纳,获得10
12秒前
12秒前
zhou完成签到,获得积分10
12秒前
爆米花应助yhc采纳,获得10
13秒前
若尘发布了新的文献求助10
13秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181283
求助须知:如何正确求助?哪些是违规求助? 3717037
关于积分的说明 11717852
捐赠科研通 3397293
什么是DOI,文献DOI怎么找? 1863997
邀请新用户注册赠送积分活动 922092
科研通“疑难数据库(出版商)”最低求助积分说明 833788