Near‐Quantitative Photothermal Conversion in Non‐Fluorescent Diradicaloid Organic Molecules for Efficient Solar Energy Harvesting

材料科学 光热治疗 能量转换效率 荧光 光化学 光电子学 吸收(声学) 有机太阳能电池 纳米技术 聚合物 光学 化学 物理 复合材料
作者
Wenru Lian,Hanjiao Chen,Xian Wang,Zhiqiang Wang,Huaqing Li,Siying Liu,Xiaoguang Hu,Xuying Liu
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (42): e11877-e11877 被引量:1
标识
DOI:10.1002/adma.202511877
摘要

Abstract Organic small molecules have emerged as promising photothermal materials for solar energy harvesting due to their structural tunability and diverse optoelectronic properties. However, achieving photothermal conversion efficiencies (PCEs) exceeding 90% in such systems remains a significant challenge, largely limited by residual fluorescence and suboptimal non‐radiative decay pathways. Here, a molecular design strategy is reported that combines inherently non‐fluorescent diradicaloid cores with electron‐donating substituents to facilitate non‐radiative decay and enhance PCE. It is demonstrated that the PCE can be effectively tuned from 64.9% (nitro‐substituted) to a near‐quantitative 94.3% (dimethylamine‐substituted). Moreover, the equilibrium temperature of dimethylamine functionalized diradicaloid can be elevated to record breaking 350 °C in organic materials under 1 W cm −2 808 nm laser, and lifted to 103 °C under one sun irradiation when loaded into polyurethane. This exceptional performance is attributed to a small energy gap, strong donor–acceptor interaction, and active molecular motion that together promote efficient vibronic relaxation and internal conversion. Furthermore, these molecules exhibit broadband absorption across 300–2000 nm, enabling a high water evaporation efficiency of 98.52% under one sun and facilitating high‐voltage output in solar thermoelectric generators. This work presents a robust design strategy for high‐efficiency organic photothermal materials, offering new opportunities for solar‐driven thermal energy harvesting and conversion technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无心的芸发布了新的文献求助10
3秒前
zjy完成签到,获得积分10
3秒前
XudongHou完成签到,获得积分10
4秒前
desperate完成签到,获得积分10
5秒前
赘婿应助caohuijun采纳,获得10
6秒前
星辰大海应助12x采纳,获得10
7秒前
噼里啪啦冲冲子完成签到 ,获得积分10
8秒前
8秒前
欧子完成签到,获得积分10
8秒前
无花果应助凤头哈士葵采纳,获得10
8秒前
9秒前
9秒前
搜集达人应助秀秀采纳,获得10
11秒前
12秒前
犹豫大侠发布了新的文献求助10
12秒前
vippp发布了新的文献求助10
13秒前
啦啦完成签到,获得积分10
13秒前
CR7应助kk采纳,获得20
14秒前
成功上岸完成签到,获得积分20
14秒前
曾峥发布了新的文献求助10
15秒前
15秒前
啦啦发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
共享精神应助Jay采纳,获得10
19秒前
叫我富婆儿完成签到,获得积分10
20秒前
DouBo发布了新的文献求助10
20秒前
shi hui应助陌陌采纳,获得10
20秒前
大气亦巧发布了新的文献求助10
20秒前
浮游应助无心的芸采纳,获得10
21秒前
21秒前
21秒前
乐观小土豆完成签到,获得积分20
21秒前
22秒前
23秒前
行走人生发布了新的文献求助10
23秒前
万能图书馆应助如如采纳,获得10
23秒前
吴雨涛完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299586
求助须知:如何正确求助?哪些是违规求助? 4447698
关于积分的说明 13843511
捐赠科研通 4333326
什么是DOI,文献DOI怎么找? 2378747
邀请新用户注册赠送积分活动 1374030
关于科研通互助平台的介绍 1339544