Neural circuit mechanisms underlying dominance traits and social competition

神经科学 优势(遗传学) 心理学 侵略 生物神经网络 前额叶皮质 扁桃形结构 生物 发展心理学 生物化学 基因 认知
作者
Han Yan,Jin Wang
出处
期刊:Biophysics reviews [American Institute of Physics]
卷期号:6 (2): 021401-021401
标识
DOI:10.1063/5.0221909
摘要

The survival of animals often hinges on their dominance status, established through repeated social competitions. The dorsomedial prefrontal cortex (dmPFC) plays a pivotal role in regulating these competitions, yet the formation of intrinsic traits like grit and aggressiveness, crucial for competitive outcomes, remains poorly understood. In this study, we constructed a dmPFC circuit model based on experimental recordings to replicate the characteristic activities of dmPFC neurons during various behavioral patterns observed in the dominance tube test. Our findings reveal that the dmPFC circuit supports bistable behavior states—effortful and passive—depending on external conditions. This bistability is essential for understanding how animals adapt their behaviors in social competitions, thereby influencing the establishment of social hierarchies. Our results indicate that increased self-excitation in pyramidal neurons within the dmPFC enhances the robustness of effortful behaviors, akin to perseverance, but reduces flexibility in responding to rapid external changes. This suggests that dominance status benefits more from perseverance than from increased aggression. Additionally, our study shows that when rapid responses to external signals are necessary, the basal activity in dmPFC neurons can be reconfigured to enhance flexibility, albeit at higher energy costs. This research advances our understanding of the neural basis of social behavior and provides a framework for further exploration into how neural circuits contribute to complex behavioral traits, offering insights into the neural dynamics underlying social dominance. This research also opens avenues for investigating psychiatric and neurological disorders where these mechanisms may be disrupted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiwi发布了新的文献求助30
刚刚
刚刚
小蒋完成签到,获得积分20
刚刚
安详靖柏发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
xx_2000完成签到,获得积分10
2秒前
2秒前
bbrfu发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
所所应助余悸采纳,获得10
3秒前
xtz发布了新的文献求助10
4秒前
黄影完成签到,获得积分20
4秒前
snow1109完成签到,获得积分10
4秒前
求求了完成签到,获得积分10
4秒前
4秒前
无极微光应助赖烊烊采纳,获得20
5秒前
科研通AI6应助SHC采纳,获得10
5秒前
达达完成签到,获得积分10
6秒前
6秒前
7秒前
小蒋发布了新的文献求助10
7秒前
HUYAOWEI发布了新的文献求助10
7秒前
8秒前
8秒前
沉默是金完成签到,获得积分10
8秒前
145发布了新的文献求助10
8秒前
8秒前
kaka完成签到,获得积分10
9秒前
英俊的铭应助Denim采纳,获得30
9秒前
cat发布了新的文献求助10
9秒前
9秒前
JamesPei应助轻松的小虾米采纳,获得30
9秒前
dd完成签到,获得积分10
10秒前
10秒前
小满完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132