ZnO/TiO2 dual-phase coating engineering on Ni-rich single-crystal NCM cathodes: Synergistic effects for structural integrity and long cycling stability

材料科学 自行车 阴极 相(物质) 涂层 化学工程 对偶(语法数字) 纳米技术 有机化学 物理化学 文学类 考古 化学 工程类 历史 艺术
作者
Yifei Gu,Quan Lu,Yu Zhou,Mingru Su,Yunjian Liu
出处
期刊:Functional Materials Letters [World Scientific]
卷期号:18 (06)
标识
DOI:10.1142/s1793604725510634
摘要

High-nickel single-crystal LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]O 2 (SC-NCM811) cathode materials have attracted considerable attention in the field of lithium-ion batteries due to their superior cycling stability and capacity retention when compared to polycrystalline alternatives. However, several critical challenges remain in their commercialization, including increased lithium/nickel mixing, diminished ion diffusivity, irreversible phase transitions, and interfacial instability. These issues limit the performance and long-term stability of nickel-rich cathodes. In this work, we systematically investigate the structural and electrochemical properties of Ni-rich cathodes modified by solid-phase sintering, incorporating nanoscale ZnO and TiO 2 dual coatings on the surface of the materials. The dual Zn/Ti coating effectively suppresses interfacial side reactions and reduces Li[Formula: see text]/Ni[Formula: see text] cation mixing, mitigating common issues related to cation disorder. Moreover, the introduction of strong M-O covalent bonds via ion doping during high-temperature sintering enhances the stability of the lattice structure, reinforcing the material’s integrity during cycling. Notably, the ZnTi-NCM sample exhibits a remarkable reversible capacity of 153.99 mAh⋅g[Formula: see text] after 200 cycles, with an impressively low inter-cycle capacity decay rate of only 0.073%, compared to 0.219% for the pristine SC-NCM. This significant improvement in cycling stability can be attributed to the synergistic effects of the Zn/Ti dual coating, which not only prevents detrimental interfacial reactions but also promotes lattice stabilization. This dual-modification strategy offers a promising avenue for the development of high-performance, durable cathode materials for next-generation lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神明发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
所所应助KYT采纳,获得10
1秒前
permanent完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
乔达摩悉达多完成签到 ,获得积分10
4秒前
5秒前
大模型应助酷炫翠柏采纳,获得30
5秒前
共享精神应助耍酷的伟祺采纳,获得10
6秒前
bu拿下PHD绝不回头完成签到,获得积分10
6秒前
bkagyin应助皇帝的床帘采纳,获得40
6秒前
扶瑶可接发布了新的文献求助10
6秒前
qq大魔王完成签到,获得积分10
7秒前
yuanqing发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
沙琪玛完成签到,获得积分20
8秒前
8秒前
Lucas应助拂晓采纳,获得10
8秒前
斯文败类应助QYPANG采纳,获得10
9秒前
liekkas发布了新的文献求助10
9秒前
10秒前
10秒前
zz桓桓完成签到,获得积分20
10秒前
edjtzlz关注了科研通微信公众号
11秒前
嘟嘟卡皮巴拉完成签到 ,获得积分10
11秒前
12秒前
lyy关注了科研通微信公众号
12秒前
田柾国发布了新的文献求助10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
风中的青完成签到,获得积分10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
panda完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213