Artificial Intelligence: For Now, an Artificial Ingredient in Hypertension Diagnosis and Management

成分 医学 计算机科学 人工智能 病理
作者
Isaac Sekitoleko,James Brian Byrd
出处
期刊:Hypertension [Ovid Technologies (Wolters Kluwer)]
卷期号:82 (11): 1789-1793
标识
DOI:10.1161/hypertensionaha.125.23626
摘要

Artificial intelligence (AI) applications in hypertension diagnosis and management are described as promising despite limited evidence of safety and efficacy. This perspective examines the substantial risks of premature AI implementation in hypertension care. We reviewed the current evidence base for AI approaches in hypertension, analyzed data quality issues in electronic health records, examined regulatory frameworks, and considered the readiness of health care systems and stakeholders. AI approaches for hypertension lack demonstrated efficacy and safety from randomized clinical trials. Training data from electronic health records suffer from poor quality control, with blood pressure measurements differing from true resting values. Clinicians routinely disregard recorded measurements, obtaining supplemental data inaccessible to algorithms. The Microsoft Aurora-Blood Pressure study, the most comprehensive evaluation of cuffless blood pressure technology, failed to meet accuracy standards except in highly constrained circumstances. Current regulatory frameworks struggle with AI's evolving nature, and informed consent becomes meaningless when clinicians cannot explain algorithmic decision-making. Accountability for AI-generated errors remains unclear, creating new patient safety risks. Infrastructure barriers prevent implementation in low-resource settings where AI could theoretically address personnel shortages. While AI may eventually transform hypertension care, current evidence does not support widespread adoption. The substantial risks-including poor data quality, regulatory gaps, accountability concerns, and potential skill atrophy among clinicians-outweigh unproven benefits. We recommend moving slowly and requiring rigorous clinical trial evidence before implementing AI systems in hypertension diagnosis and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Li发布了新的文献求助10
刚刚
刚刚
chansalic完成签到,获得积分20
刚刚
小二郎应助席以亦采纳,获得10
1秒前
廉6666发布了新的文献求助10
1秒前
Jasper应助mimiflying采纳,获得10
1秒前
刘思琪发布了新的文献求助10
1秒前
1秒前
睡觉补充能量完成签到,获得积分10
1秒前
wilson发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
Cat完成签到,获得积分0
3秒前
will发布了新的文献求助200
3秒前
CC发布了新的文献求助10
3秒前
852应助鼓得文采纳,获得10
3秒前
bubble发布了新的文献求助10
3秒前
爱睡觉的虾米完成签到 ,获得积分10
3秒前
3秒前
4秒前
诩阽完成签到,获得积分10
4秒前
简单发布了新的文献求助10
4秒前
4秒前
77发布了新的文献求助10
4秒前
xi12345完成签到 ,获得积分10
4秒前
4秒前
美好成败发布了新的文献求助10
4秒前
4秒前
sakura发布了新的文献求助10
5秒前
今后应助天才美少女骚猪采纳,获得10
5秒前
6秒前
6秒前
purple完成签到 ,获得积分10
7秒前
小幽灵发布了新的文献求助10
7秒前
善学以致用应助zlz采纳,获得10
7秒前
LuoLuo完成签到,获得积分10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
兰先生发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396796
求助须知:如何正确求助?哪些是违规求助? 4517121
关于积分的说明 14062479
捐赠科研通 4428983
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424661
关于科研通互助平台的介绍 1403657