Save It for the “hot” Day: An LLM-Empowered Visual Analytics System for Heat Risk Management

计算机科学 视觉分析 分析 可视化 数据可视化 风险管理 数据科学 计算机图形学(图像) 数据挖掘 经济 管理
作者
Haobo Li,Wong Kam-Kwai,Yan Luo,Juntong Chen,Chengzhong Liu,Yaxuan Zhang,Alexis K.H. Lau,Huamin Qu,Dongyu Liu
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tvcg.2025.3586689
摘要

The escalating frequency and intensity of heat-related climate events, particularly heatwaves, emphasize the pressing need for advanced heat risk management strategies. Current approaches, primarily relying on numerical models, face challenges in spatial-temporal resolution and in capturing the dynamic interplay of environmental, social, and behavioral factors affecting heat risks. This has led to difficulties in translating risk assessments into effective mitigation actions. Recognizing these problems, we introduce a novel approach leveraging the burgeoning capabilities of Large Language Models (LLMs) to extract rich and contextual insights from news reports. We hence propose an LLM-empowered visual analytics system, Havior, that integrates the precise, data-driven insights of numerical models with nuanced news report information. This hybrid approach enables a more comprehensive assessment of heat risks and better identification, assessment, and mitigation of heat-related threats. The system incorporates novel visualization designs, such as "thermoglyph" and news glyph, enhancing intuitive understanding and analysis of heat risks. The integration of LLM-based techniques also enables advanced information retrieval and semantic knowledge extraction that can be guided by experts' analytics needs. We conducted an experiment on information extraction, a case study on the 2022 China Heatwave, and an expert survey & interview collaborated with six domain experts, demonstrating the usefulness of our system in providing in-depth and actionable insights for heat risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助einspringen采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
大力帽子应助科研通管家采纳,获得10
1秒前
liangliang完成签到,获得积分10
1秒前
2秒前
拼搏黄豆发布了新的文献求助10
2秒前
丘比特应助迷人的盼易采纳,获得10
3秒前
3秒前
4秒前
zgrmws完成签到,获得积分0
4秒前
琪琪发布了新的文献求助10
4秒前
乐乐应助俏皮芷蕊采纳,获得100
5秒前
量子星尘发布了新的文献求助10
5秒前
老实秋寒应助袁琴采纳,获得10
5秒前
5秒前
5秒前
是问完成签到,获得积分10
6秒前
6秒前
迷人灰狼完成签到,获得积分10
7秒前
bin发布了新的文献求助10
7秒前
xuexi发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
einspringen发布了新的文献求助10
9秒前
风祈发布了新的文献求助10
10秒前
10秒前
11秒前
滑腻腻的小鱼完成签到,获得积分10
12秒前
真实的语堂完成签到,获得积分10
13秒前
13秒前
小羚羊完成签到,获得积分10
14秒前
刘帅帅发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636