Asymptotic-analysis-inspired boundary conditions aiming at eliminating polymer diffusive instability

不稳定性 机械 渐近分析 边界(拓扑) 计算机科学 物理 数学分析 数学
作者
Ming Dong,Dongdong Wan
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1020
标识
DOI:10.1017/jfm.2025.10650
摘要

The recent discovery of polymer diffusive instability (PDI) by Beneitez et al. (2023 Phys. Rev. Fluids 8 , L101901), poses challenges in implementing artificial conformation diffusion (ACD) in transition simulations of viscoelastic wall-shear flows. In this paper, we demonstrate that the unstable PDI is primarily induced by the conformation boundary conditions additionally introduced in the ACD equation system, which could be eliminated if a new set of conformation conditions is adopted. To address this issue, we begin with an asymptotic analysis of the PDI within the near-wall thin diffusive layer, which simplifies the complexity of the instability system by reducing the number of the controlling parameters from five to zero. Then, based on this simplified model, we construct a stable asymptotic solution that minimises the perturbations in the wall sublayer. From the near-wall behaviour of this solution, we derive a new set of conformation boundary conditions, prescribing a Neumann-type condition for its streamwise stretching component, $c_{11}$ , and Dirichlet-type conditions for all the other conformation components. These boundary conditions are subsequently validated within the original ACD instability system, incorporating both the Oldroyd-B and the finitely extensible nonlinear elastic Peterlin constitutive models. Finally, we perform direct numerical simulations based on the traditional and the new conformation conditions, demonstrating the effectiveness of the latter in eliminating the unstable PDI. Importantly, this improvement does not affect the calculations of other types of instabilities. Therefore, this work offers a promising approach for achieving reliable polymer-flow simulations with ACD, ensuring both numerical stability and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
64658应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得80
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
xzy998应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
情怀应助科研通管家采纳,获得10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
daw发布了新的文献求助10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
汉堡包应助小马采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
GGGrigor发布了新的文献求助10
4秒前
稳重的无色完成签到,获得积分10
5秒前
Mark0001完成签到,获得积分10
6秒前
腾茹煊完成签到,获得积分20
7秒前
HDrinnk完成签到,获得积分10
7秒前
ZSJ完成签到,获得积分10
7秒前
9秒前
安逸完成签到,获得积分10
9秒前
明理的傥完成签到 ,获得积分20
10秒前
marven完成签到,获得积分10
11秒前
闻闻完成签到 ,获得积分10
11秒前
腾茹煊发布了新的文献求助10
12秒前
15秒前
浅帅发布了新的文献求助10
16秒前
在水一方应助积极访冬采纳,获得10
17秒前
daw完成签到,获得积分10
17秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761142
求助须知:如何正确求助?哪些是违规求助? 4101509
关于积分的说明 12691240
捐赠科研通 3817259
什么是DOI,文献DOI怎么找? 2107125
邀请新用户注册赠送积分活动 1131772
关于科研通互助平台的介绍 1010672