Smart Monitoring of Power Transformers in Substation 4.0: Multi-Sensor Integration and Machine Learning Approach

SCADA系统 可靠性工程 异常检测 变压器 计算机科学 实时计算 可解释性 状态监测 电力系统 故障检测与隔离 工程类 数据挖掘 执行机构 人工智能 功率(物理) 电气工程 物理 量子力学 电压
作者
Fabio Henrique de Souza Duz,Tiago Gonçalves Zacarias,Ronny Francis Ribeiro,Fábio Monteiro Steiner,Frederico de Oliveira Assunção,Erik Leandro Bonaldi,Luiz Eduardo Borges-da-Silva
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (17): 5469-5469
标识
DOI:10.3390/s25175469
摘要

Power transformers are critical components in electrical power systems, where failures can cause significant outages and economic losses. Traditional maintenance strategies, typically based on offline inspections, are increasingly insufficient to meet the reliability requirements of modern digital substations. This work presents an integrated multi-sensor monitoring framework that combines online frequency response analysis (OnFRA® 4.0), capacitive tap-based monitoring (FRACTIVE® 4.0), dissolved gas analysis, and temperature measurements. All data streams are synchronized and managed within a SCADA system that supports real-time visualization and historical traceability. To enable automated fault diagnosis, a Random Forest classifier was trained using simulated datasets derived from laboratory experiments that emulate typical transformer and bushing degradation scenarios. Principal Component Analysis was employed for dimensionality reduction, improving model interpretability and computational efficiency. The proposed model achieved perfect classification metrics on the simulated data, demonstrating the feasibility of combining high-fidelity monitoring hardware with machine learning techniques for anomaly detection. Although no in-service failures have been recorded to date, the monitoring infrastructure is already tested and validated through laboratory conditions, enabling continuous data acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
1秒前
科研通AI5应助abai采纳,获得10
1秒前
小蘑菇应助chengxue采纳,获得10
1秒前
zxy发布了新的文献求助10
1秒前
2秒前
2秒前
zlq完成签到 ,获得积分10
2秒前
2秒前
启航发布了新的文献求助10
3秒前
wfx发布了新的文献求助10
3秒前
无心的紫山完成签到,获得积分10
3秒前
四季物语发布了新的文献求助10
3秒前
坚强奇异果完成签到,获得积分10
3秒前
正直的魔镜完成签到,获得积分10
4秒前
搞怪惜梦完成签到,获得积分10
5秒前
糖卜里卜完成签到,获得积分20
5秒前
贾福运发布了新的文献求助10
5秒前
Bertha发布了新的文献求助10
6秒前
小帅发布了新的文献求助10
6秒前
十月_i完成签到 ,获得积分10
6秒前
7秒前
7秒前
qwe1108完成签到,获得积分10
8秒前
CipherSage应助月色采纳,获得10
9秒前
山复尔尔完成签到 ,获得积分10
9秒前
浮游应助学术乌龟采纳,获得10
9秒前
10秒前
打打应助抽疯的电风扇13采纳,获得10
10秒前
墨染书香发布了新的文献求助10
11秒前
田様应助鹤扰采纳,获得10
11秒前
贾福运完成签到,获得积分10
11秒前
11秒前
11秒前
党祥鑫应助零度采纳,获得10
12秒前
13秒前
无限的猕猴桃完成签到,获得积分10
13秒前
13秒前
长夜变清早完成签到,获得积分10
13秒前
wfx完成签到,获得积分20
14秒前
科研通AI6应助flyingbird采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074392
求助须知:如何正确求助?哪些是违规求助? 4294523
关于积分的说明 13381522
捐赠科研通 4115896
什么是DOI,文献DOI怎么找? 2253991
邀请新用户注册赠送积分活动 1258605
关于科研通互助平台的介绍 1191479