Origin traceability of Yimucao (Chinese motherwort) in China using stable isotopes and extracts assisted by machine learning techniques

主成分分析 随机森林 人工智能 可追溯性 机器学习 生物 数学 地理 统计 计算机科学
作者
Juanru Liu,Chun‐Wang Meng,Ke K. Zhang,Sheng Gong,Fang Wang,Li Guo,Na Zou,Mengyuan Wu,Cheng Peng,Liang Xiong
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:126: 105900-105900 被引量:3
标识
DOI:10.1016/j.jfca.2023.105900
摘要

Leonurus japonicus Houtt. is a medicine food homology plant that is widely farmed in China. In traditional Chinese medicine, the aerial part of L. japonicus (Chinese motherwort) is named Yimucao and has medicinal uses. Yimucao in the seedling stage can be eaten as a wild vegetable and incorporated into one's everyday diet. The quality of Yimucao is often associated with its production origins, and the geographical authenticity of Yimucao is important for ensuring its clinical efficacy. A combined strategy based on the analysis of stable isotopes (δ13C, δ15N, δ2H, and δ18O), elemental content (%C and %N), and extracts (aqueous and ethanol extracts) was conducted to trace the geographical origin of Yimucao in China. Here, eight variables of 63 Yimucao samples collected from eight provinces were examined, and notable distinctions were observed on the provincial scale and regional scale (P < 0.05). Principal component analysis, orthogonal partial least square–discriminant analysis, and four machine learning methods (random forest, adaptive boosting, support vector machine, and neural network) were applied for geographical classification. We found that the random forest model was the most optimal classifier with a remarkable prediction accuracy reaching 98.4%. Among the eight differentiation markers analyzed, δ15N, δ18O, and δ2H were the most potent indicators. The correlation analysis between eight variables and environmental factors indicated that latitude, sunshine duration, and relative humidity were responsible for the majority of the differences in the production areas. This study demonstrated that comprehensive analysis of stable isotopes and extracts assisted by machine learning algorithms is a powerful method for determining the geographical origins of Yimucao in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyw完成签到,获得积分10
2秒前
科研通AI2S应助为治采纳,获得30
2秒前
手帕很忙完成签到,获得积分10
2秒前
糊涂的服饰完成签到,获得积分10
2秒前
Jieh完成签到,获得积分10
3秒前
魔幻的醉柳完成签到,获得积分10
5秒前
秋思冬念完成签到 ,获得积分10
5秒前
chuzihang完成签到 ,获得积分10
8秒前
干净思远完成签到,获得积分10
8秒前
穿山的百足公主完成签到,获得积分10
10秒前
yongziwu完成签到,获得积分10
10秒前
kuyi完成签到 ,获得积分10
11秒前
猛男完成签到,获得积分10
11秒前
sseekker完成签到 ,获得积分10
11秒前
12秒前
wanjingwan完成签到 ,获得积分10
17秒前
苑世朝完成签到,获得积分10
17秒前
刚子完成签到 ,获得积分10
18秒前
zzu123456发布了新的文献求助10
18秒前
韧迹完成签到 ,获得积分10
19秒前
20秒前
YY完成签到,获得积分10
23秒前
舒仲完成签到,获得积分10
25秒前
zzu123456完成签到,获得积分10
25秒前
红豆醉完成签到,获得积分20
26秒前
28秒前
暮雪残梅完成签到 ,获得积分10
30秒前
Ning发布了新的文献求助10
31秒前
123完成签到 ,获得积分10
32秒前
34秒前
六叶草完成签到,获得积分10
34秒前
wxs完成签到,获得积分10
35秒前
jeffrey完成签到,获得积分10
37秒前
Java完成签到,获得积分10
38秒前
红豆醉发布了新的文献求助10
39秒前
仁爱的觅夏完成签到,获得积分10
41秒前
42秒前
十二月完成签到,获得积分10
43秒前
LIUJIE完成签到,获得积分10
43秒前
鲁滨逊完成签到 ,获得积分10
44秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907032
求助须知:如何正确求助?哪些是违规求助? 3452408
关于积分的说明 10870299
捐赠科研通 3178303
什么是DOI,文献DOI怎么找? 1755892
邀请新用户注册赠送积分活动 849170
科研通“疑难数据库(出版商)”最低求助积分说明 791387