清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Urbanization and weather dynamics co-dominated the spatial-temporal variation in pCO2 and CO2 fluxes in small montanic rivers draining diverse landscapes

城市化 环境科学 空间变异性 生物地球化学循环 空间生态学 分水岭 水文学(农业) 温室气体 空间分布 自然地理学 地理 生态学 海洋学 地质学 岩土工程 生物 数学 遥感 统计 机器学习 计算机科学
作者
Zhaoyin Qing,Xiaofeng Wang,Xian‐Xiang Li,Jian Chen,Yi Yang,Ting Zhou,Tingting Liu,Shuangshuang Liu,Yafang Huang,Yixin He
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:351: 119884-119884 被引量:5
标识
DOI:10.1016/j.jenvman.2023.119884
摘要

Rivers have been widely reported as important CO2 emitters to the atmosphere. Rapid urbanization has a profound impact on the carbon biogeochemical cycle of rivers, leading to enhanced riverine CO2 evasions. However, it is still unclear whether the spatial–temporal patterns of CO2 emissions in the rivers draining diverse landscapes dominated by urbanization were stable, especially in mountainous areas. This study carried out a two-year investigation of water environmental hydrochemistry in three small mountainous rivers draining urban, suburban and rural landscapes in southwestern China, and CO2 partial pressure (pCO2) and fluxes (fCO2) in surface water were measured using headspace equilibrium method and classical thin boundary layer model. The average pCO2 and fCO2 in the highly urbanized river were of 4783.6 μatm and 700.0 mmol m−2 d−1, conspicuously higher than those in the rural river (1525.9 μatm and 123.2 mmol m−2 d−1), and the suburban river presented a moderate level (3114.2 μatm and 261.2 mmol m−2 d−1). It provided even clearer evidence that watershed urbanization could remarkably enhance riverine CO2 emissions. More importantly, the three rivers presented different longitudinal variations in pCO2, implying diversified spatial patterns of riverine CO2 emissions as a result of urbanization. The urban land can explain 49.6–69.1% of the total spatial variation in pCO2 at the reach scale, indicating that urban land distribution indirectly dominated the longitudinal pattern of riverine pCO2 and fCO2. pCO2 and fCO2 in the three rivers showed similar temporal variability with higher warm-rainy seasons and lower dry seasons, which are significantly controlled by weather dynamics, including monthly temperature and precipitation, but seem to be impervious to watershed urbanization. High temperature-stimulated microorganisms metabolism and riched-CO2 runoff input lead much higher pCO2 in warm-rainy seasons. However, it showed more sensitivity of pCO2 to monthly weather dynamics in urbanized rivers than that in rural rivers, and warm-rainy seasons showed hot moments of CO2 evasion for urban rivers. TOC, DOC, TN, pH and DO were the main controls on pCO2 in the urban and suburban rivers, while only pH and DO were connected with pCO2 in the rural rivers. This indicated differential controls and regulatory processes of pCO2 in the rivers draining diverse landscapes. Furthermore, it suggested that pCO2 calculated by the pH-total alkalinity method would obviously overestimate pCO2 in urban polluted rivers due to the inevitable influence of non-carbonate alkalinity, and thus, a relatively conservative headspace method should be recommended. We highlighted that urbanization and weather dynamics co-dominated the multiformity and uncertainty in spatial–temporal patterns of riverine CO2 evasions, which should be considered when modeling CO2 dynamics in urbanized rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
20秒前
大医仁心完成签到 ,获得积分10
44秒前
苗条柏柳关注了科研通微信公众号
54秒前
1分钟前
苗条柏柳发布了新的文献求助10
1分钟前
方白秋完成签到,获得积分10
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
1分钟前
sunflower完成签到,获得积分0
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
2分钟前
知行者完成签到 ,获得积分10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
英俊的铭应助Jack采纳,获得10
3分钟前
4分钟前
清神安完成签到,获得积分10
4分钟前
乒坛巨人完成签到 ,获得积分0
5分钟前
LELE完成签到 ,获得积分10
5分钟前
蓝桉完成签到 ,获得积分10
5分钟前
daixan89完成签到 ,获得积分10
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI5应助Suchus采纳,获得30
7分钟前
TongKY完成签到 ,获得积分10
7分钟前
7分钟前
胖小羊完成签到 ,获得积分10
7分钟前
7分钟前
淡定的幻枫完成签到 ,获得积分10
8分钟前
future完成签到 ,获得积分10
8分钟前
StayGolDay完成签到,获得积分10
8分钟前
GG完成签到 ,获得积分10
8分钟前
ableyy完成签到 ,获得积分10
8分钟前
幸福的鑫鹏完成签到 ,获得积分10
8分钟前
英喆完成签到 ,获得积分10
8分钟前
8分钟前
自觉怜雪发布了新的文献求助10
8分钟前
汉堡包应助自觉怜雪采纳,获得10
9分钟前
9分钟前
9分钟前
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124732
求助须知:如何正确求助?哪些是违规求助? 3662531
关于积分的说明 11590431
捐赠科研通 3362624
什么是DOI,文献DOI怎么找? 1847719
邀请新用户注册赠送积分活动 912043
科研通“疑难数据库(出版商)”最低求助积分说明 827849