Scaling deep learning for materials discovery

计算机科学 深度学习 凸壳 缩放比例 人工智能 纳米技术 正多边形 材料科学 数学 几何学
作者
Amil Merchant,Simon Batzner,Samuel S. Schoenholz,Muratahan Aykol,Gowoon Cheon,Ekin D. Cubuk
出处
期刊:Nature [Nature Portfolio]
卷期号:624 (7990): 80-85 被引量:370
标识
DOI:10.1038/s41586-023-06735-9
摘要

Abstract Novel functional materials enable fundamental breakthroughs across technological applications from clean energy to information processing 1–11 . From microchips to batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by expensive trial-and-error approaches. Concurrently, deep-learning models for language, vision and biology have showcased emergent predictive capabilities with increasing data and computation 12–14 . Here we show that graph networks trained at scale can reach unprecedented levels of generalization, improving the efficiency of materials discovery by an order of magnitude. Building on 48,000 stable crystals identified in continuing studies 15–17 , improved efficiency enables the discovery of 2.2 million structures below the current convex hull, many of which escaped previous human chemical intuition. Our work represents an order-of-magnitude expansion in stable materials known to humanity. Stable discoveries that are on the final convex hull will be made available to screen for technological applications, as we demonstrate for layered materials and solid-electrolyte candidates. Of the stable structures, 736 have already been independently experimentally realized. The scale and diversity of hundreds of millions of first-principles calculations also unlock modelling capabilities for downstream applications, leading in particular to highly accurate and robust learned interatomic potentials that can be used in condensed-phase molecular-dynamics simulations and high-fidelity zero-shot prediction of ionic conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助AaronDon采纳,获得20
刚刚
1秒前
、、发布了新的文献求助10
1秒前
2秒前
小蘑菇应助小张采纳,获得10
2秒前
lllth发布了新的文献求助10
4秒前
着急的寒梦完成签到,获得积分20
4秒前
5秒前
YULIA完成签到,获得积分10
6秒前
6秒前
海棠发布了新的文献求助30
7秒前
baishao发布了新的文献求助10
9秒前
slx0410完成签到,获得积分10
9秒前
aji完成签到,获得积分10
10秒前
光亮蜗牛完成签到 ,获得积分10
11秒前
hydra351发布了新的文献求助10
12秒前
小马甲应助着急的寒梦采纳,获得10
12秒前
sunny完成签到,获得积分10
12秒前
13秒前
不i完成签到,获得积分20
13秒前
巴达天使完成签到,获得积分10
14秒前
sean118完成签到 ,获得积分10
14秒前
Ava应助Allenzz采纳,获得20
15秒前
海棠完成签到,获得积分10
15秒前
sunny发布了新的文献求助10
16秒前
16秒前
不i发布了新的文献求助10
18秒前
18秒前
18秒前
小马甲应助高大豌豆采纳,获得10
20秒前
Murphy_H完成签到,获得积分10
20秒前
ACY完成签到,获得积分10
23秒前
23秒前
lllth完成签到,获得积分10
30秒前
Orange应助欣喜的迎梦采纳,获得10
31秒前
CipherSage应助乐观的非笑采纳,获得10
31秒前
32秒前
南瓜豚发布了新的文献求助10
35秒前
王明磊完成签到 ,获得积分10
36秒前
Hello应助荡秋千的猴子采纳,获得10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093