A Benchmark for SOTIF of Lane Marking Detection Algorithms of Autonomous Vehicles

水准点(测量) 计算机科学 算法 人工智能 地质学 大地测量学
作者
Haohui He,Cheng Wang,Yuxin Zhang,Miao Zhang
标识
DOI:10.1109/cvci59596.2023.10397363
摘要

Lane marking (LM) detection as an essential function for autonomous vehicles (AVs) has been extensively studied. Various machine learning-based algorithms are proposed to improve detection accuracy, while relatively less attention is paid to analyzing their performance limitations and quantifying their performance boundaries. Consequently, it becomes challenging to design a safe operational design domain where AVs are supposed to be operated safely. To address this issue, this paper proposes a benchmark for lane marking detection algorithms (LMDAs) to facilitate the determination of their performance boundaries. Specifically, we generated adversarial lane markings by automatically introducing random wear and regional wear to original challenging images selected from large-scale datasets. We also consider other factors such as image noise, brightness, contrast and color saturation for generating different types of adversarial lane markings. The resulting dataset with adversarial lane markings can be used to identify the performance boundaries of LMDAs. In evaluating the performance of LMDAs, the paper explores existing evaluation metrics and classifies them based on their application scopes. The results are of great value for guiding the development of LMDAs. In particular, the benchmark is useful for the Safety of the Intended Functionality (SOTIF) of LMDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cossen完成签到,获得积分10
刚刚
1秒前
3秒前
lv发布了新的文献求助10
6秒前
FYJY发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
Hoshino完成签到,获得积分10
8秒前
Tiger完成签到,获得积分10
8秒前
9秒前
ygx完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
朴实半凡发布了新的文献求助10
13秒前
在水一方应助lv采纳,获得10
15秒前
咕咕发布了新的文献求助10
16秒前
_Forelsket_完成签到,获得积分10
16秒前
16秒前
SYLH应助MMP采纳,获得30
17秒前
大鸟依人完成签到 ,获得积分10
24秒前
Herry-Jeremy完成签到,获得积分10
29秒前
29秒前
科研通AI5应助钟沐晨采纳,获得10
29秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
31秒前
领导范儿应助FYJY采纳,获得10
32秒前
QPP发布了新的文献求助20
33秒前
桐桐应助甜甜沉鱼采纳,获得10
33秒前
34秒前
36秒前
36秒前
39秒前
进击的研狗完成签到 ,获得积分10
40秒前
FYJY发布了新的文献求助10
41秒前
43秒前
QPP完成签到,获得积分10
43秒前
汉堡包应助孝顺的冥王星采纳,获得10
43秒前
44秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865163
求助须知:如何正确求助?哪些是违规求助? 3407446
关于积分的说明 10654424
捐赠科研通 3131520
什么是DOI,文献DOI怎么找? 1727106
邀请新用户注册赠送积分活动 832146
科研通“疑难数据库(出版商)”最低求助积分说明 780175