亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-Supervised Disease Classification Based on Limited Medical Image Data

计算机科学 人工智能 机器学习 背景(考古学) 水准点(测量) 医学影像学 上下文图像分类 监督学习 模式识别(心理学) 图像(数学) 人工神经网络 古生物学 大地测量学 生物 地理
作者
Yan Zhang,Chun Li,Zhaoxia Liu,Ming Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1575-1586 被引量:2
标识
DOI:10.1109/jbhi.2024.3349412
摘要

Inrecent years, significant progress has been made in the field of learning from positive and unlabeled examples (PU learning), particularly in the context of advancing image and text classification tasks. However, applying PU learning to semi-supervised disease classification remains a formidable challenge, primarily due to the limited availability of labeled medical images. In the realm of medical image-aided diagnosis algorithms, numerous theoretical and practical obstacles persist. The research on PU learning for medical image-assisted diagnosis holds substantial importance, as it aims to reduce the time spent by professional experts in classifying images. Unlike natural images, medical images are typically accompanied by a scarcity of annotated data, while an abundance of unlabeled cases exists. Addressing these challenges, this paper introduces a novel generative model inspired by Hölder divergence, specifically designed for semi-supervised disease classification using positive and unlabeled medical image data. In this paper, we present a comprehensive formulation of the problem and establish its theoretical feasibility through rigorous mathematical analysis. To evaluate the effectiveness of our proposed approach, we conduct extensive experiments on five benchmark datasets commonly used in PU medical learning: BreastMNIST, PneumoniaMNIST, BloodMNIST, OCTMNIST, and AMD. The experimental results clearly demonstrate the superiority of our method over existing approaches based on KL divergence. Notably, our approach achieves state-of-the-art performance on all five disease classification benchmarks. By addressing the limitations imposed by limited labeled data and harnessing the untapped potential of unlabeled medical images, our novel generative model presents a promising direction for enhancing semi-supervised disease classification in the field of medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
咿咿呀呀完成签到,获得积分10
3秒前
华仔应助恰知采纳,获得30
4秒前
KID发布了新的文献求助10
9秒前
10秒前
xx完成签到,获得积分10
10秒前
10秒前
xx发布了新的文献求助10
14秒前
朱文韬发布了新的文献求助10
15秒前
赝品也烂漫完成签到,获得积分10
18秒前
xixi完成签到 ,获得积分10
27秒前
橙子完成签到 ,获得积分10
28秒前
烟花应助KID采纳,获得10
37秒前
星点完成签到 ,获得积分10
39秒前
尚可完成签到 ,获得积分10
43秒前
44秒前
纯情的无色完成签到 ,获得积分10
51秒前
52秒前
KID发布了新的文献求助10
58秒前
58秒前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
小罗咩咩发布了新的文献求助20
1分钟前
1分钟前
A水暖五金批发张哥完成签到,获得积分10
1分钟前
我真的要好好学习完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
所所应助梁筱筱采纳,获得10
1分钟前
1分钟前
梁筱筱发布了新的文献求助10
1分钟前
归尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
阿波罗完成签到,获得积分10
1分钟前
1分钟前
GOJI发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960030
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128455
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056