抑制性突触后电位
神经传递
突触后电流
兴奋性突触后电位
突触后电位
NMDA受体
神经科学
化学
兴奋剂
生物物理学
受体
生物
生物化学
作者
Kiyofumi Yamamoto,Satoshi Kosukegawa,Masayuki Kobayashi
标识
DOI:10.1016/j.neuropharm.2023.109817
摘要
Adenosine triphosphate (ATP) changes the efficacy of synaptic transmission. Despite recent progress in terms of the roles of purinergic receptors in cerebrocortical excitatory synaptic transmission, their contribution to inhibitory synaptic transmission is unknown. To elucidate the effects of α,β-methylene ATP (αβ-mATP), a selective agonist of P2X receptors (P2XRs), on inhibitory synaptic transmission in the insular cortex (IC), we performed whole-cell patch-clamp recording from IC pyramidal neurons (PNs) and fast-spiking neurons (FSNs) in either sex of VGAT-Venus transgenic rats. αβ-mATP increased the amplitude of miniature IPSCs (mIPSCs) under conditions in which NMDA receptors (NMDARs) are recruitable. αβ-mATP-induced facilitation of mIPSCs was sustained even after the washout of αβ-mATP, which was blocked by preincubation with fluorocitrate. The preapplication of NF023 (a P2X1 receptor antagonist) or AF-353 (a P2X3 receptor antagonist) blocked αβ-mATP-induced mIPSC facilitation. Intracellular application of the NMDAR antagonist MK801 blocked the facilitation. d-serine, which is an intrinsic agonist of NMDARs, mimicked αβ-mATP-induced mIPSC facilitation. The intracellular application of BAPTA a Ca2+ chelator, or the bath application of KN-62, a CaMKII inhibitor, blocked αβ-mATP-induced mIPSC facilitation, thus indicating that mIPSC facilitation by αβ-mATP required postsynaptic [Ca2+]i elevation through NMDAR activation. Paired whole-cell patch-clamp recordings from FSNs and PNs demonstrated that αβ-mATP increased the amplitude of unitary IPSCs without changing the paired-pulse ratio. These results suggest that αβ-mATP-induced IPSC facilitation is mediated by postsynaptic NMDAR activations through d-serine released from astrocytes. Subsequent [Ca2+]i increase and postsynaptic CaMKII activation may release retrograde messengers that upregulate GABA release from presynaptic inhibitory neurons, including FSNs. (250/250 words).
科研通智能强力驱动
Strongly Powered by AbleSci AI