A Dual-View Fusion Network for Automatic Spinal Keypoint Detection in Biplane X-ray Images

子网 人工智能 计算机视觉 计算机科学 模式识别(心理学) 计算机安全
作者
Dandan Zhou,Lijun Guo,Rong Zhang,Xiuchao He,Qiang Wang,Jianhua Wang
标识
DOI:10.1109/bibm58861.2023.10385670
摘要

Accurate keypoint detection in medical images of the spine is critical for the assessment, diagnosis, treatment planning, and clinical investigation of spinal deformities. However, due to severe occlusions of spinal structures in lateral X-ray images, accurate keypoint detection can be hardly achieved in lateral X-ray images based on single-view information. Thus, methods based on both the anterior-posterior (AP) and lateral (LAT) X-ray image views have been proposed to alleviate occlusion problems and achieve better keypoint detection performance. Although some progress has been made with these dual-view methods, they do not effectively exploit a priori knowledge of the spine and hence cannot adequately account for the structural correlation of the vertebrae across views. In this paper, a new dual-view fusion network (DVFNet) framework is proposed for keypoint detection in spinal X-ray images. This framework obtains structural correlations between AP and LAT views of the spine based on a priori spine knowledge represented by high-level semantic features. Meanwhile, the proposed framework combines local and global features extracted respectively by a local subnetwork and a global subnetwork. On the one hand, the local subnetwork is constructed as an enhanced codec structure based on both the AP and LAT views. This subnetwork is trained to output local features that contain both joint semantic features of the two views and independent fine-grained features of each individual view. This scheme leads to accurate keypoint estimation locally. On the other hand, the global subnetwork utilizes a self-attention mechanism to extract view-specific global features based on either the AP view or the LAT view in order to eliminate ambiguity, and reduce confusion on keypoint locations. Further, we propose a weighted feature fusion (WFF) module for adaptive fusion of the local and global features. We evaluated the DVFNet model on a private dataset and found that our proposed method achieves more accurate spinal keypoint detection compared to other state-of-the-art methods, and thus our method can provide reliable assistance to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
felix发布了新的文献求助30
3秒前
都挺好发布了新的文献求助10
5秒前
英姑应助小姚采纳,获得10
5秒前
7秒前
烨枫晨曦完成签到,获得积分10
8秒前
8秒前
星希完成签到 ,获得积分10
9秒前
独特天问完成签到,获得积分10
9秒前
xiatian发布了新的文献求助10
10秒前
Regulusyang完成签到,获得积分10
11秒前
11秒前
共享精神应助qq596采纳,获得10
11秒前
王康瑞关注了科研通微信公众号
12秒前
zhang17732207429完成签到,获得积分10
12秒前
13秒前
李知泽发布了新的文献求助10
13秒前
科研狗发布了新的文献求助10
13秒前
科研通AI2S应助迷人素采纳,获得10
14秒前
14秒前
15秒前
丰知然应助褪色采纳,获得10
16秒前
孤雏发布了新的文献求助10
17秒前
19秒前
felix发布了新的文献求助30
19秒前
XiaoO发布了新的文献求助10
20秒前
陆柒捌发布了新的文献求助10
20秒前
21秒前
jolt完成签到 ,获得积分10
21秒前
咏梅发布了新的文献求助10
21秒前
褪色完成签到,获得积分10
21秒前
rafayel完成签到,获得积分10
24秒前
24秒前
整齐的小霜完成签到,获得积分10
24秒前
孤雏完成签到,获得积分10
24秒前
25秒前
25秒前
尊敬灵萱发布了新的文献求助10
26秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888673
求助须知:如何正确求助?哪些是违规求助? 3431027
关于积分的说明 10772227
捐赠科研通 3156037
什么是DOI,文献DOI怎么找? 1742835
邀请新用户注册赠送积分活动 841413
科研通“疑难数据库(出版商)”最低求助积分说明 785917