DDoS Attacks Detection in IoV using ML-based Models with an Enhanced Feature Selection Technique

计算机科学 服务拒绝攻击 特征选择 人工智能 选择(遗传算法) 特征(语言学) 应用层DDoS攻击 模式识别(心理学) 数据挖掘 机器学习 互联网 操作系统 语言学 哲学
作者
Ohoud Ali Albishi,Monir Abdullah
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (2) 被引量:1
标识
DOI:10.14569/ijacsa.2024.0150282
摘要

The Internet of Vesicles (IoV) is an open and integrated network system with high reliability and security control capabilities. The system consists of vehicles, users, in-frastructure, and related networks. Despite the many advantages of IoV, it is also vulnerable to various types of attacks due to the continuous and increasing growth of cyber security attacks. One of the most significant attacks is a Distributed Denial of Service (DDoS) attack, where an intruder or a group of attackers attempts to deny legitimate users access to the service. This attack is performed by many systems, and the attacker uses high-performance processing units. The most common DDoS attacks are User Datagram Protocol (UDP) Lag and, SYN Flood. There are many solutions to deal with these attacks, but DDoS attacks require high-quality solutions. In this research, we explore how these attacks can be addressed through Machine Learning (ML) models. We proposed a method for identifying DDoS attacks using ML models, which we integrate with the CICDDoS2019 dataset that contains instances of such attacks. This approach also provides a good estimate of the model’s performance based on feature extraction strategic, while still being computationally efficient algorithms to divide the dataset into training and testing sets. The best ML models tested in the UDP Lag attack, Decision Tree (DT) and Random Forest (RF) had the best results with a precision, recall, and F1 score of 99.9%. In the SYN Flood attack, the best-tested ML models, including K-Nearest Neighbor (KNN), DT, and RF, demonstrated superior results with 99.9% precision, recall, and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助不知道叫啥采纳,获得20
7秒前
奋斗的蓝蜗牛完成签到,获得积分10
7秒前
动听的续发布了新的文献求助10
7秒前
7秒前
8秒前
mao应助黄黄采纳,获得10
11秒前
22发布了新的文献求助10
12秒前
献文发布了新的文献求助10
12秒前
研友_VZG7GZ应助Jian采纳,获得30
14秒前
hesven完成签到 ,获得积分10
16秒前
hkhhh完成签到,获得积分20
18秒前
kannakaco完成签到,获得积分10
18秒前
19秒前
20秒前
木冉完成签到,获得积分10
20秒前
20秒前
evyhui发布了新的文献求助10
25秒前
25秒前
26秒前
J157完成签到,获得积分10
26秒前
yhb完成签到,获得积分10
28秒前
30秒前
J157发布了新的文献求助10
30秒前
heartbeat完成签到,获得积分10
33秒前
深情安青应助奋斗的忆南采纳,获得10
33秒前
33秒前
33秒前
太叔丹翠发布了新的文献求助10
34秒前
时间地点条件完成签到,获得积分10
36秒前
evyhui完成签到,获得积分10
36秒前
37秒前
zwy109完成签到 ,获得积分10
37秒前
yhb发布了新的文献求助10
37秒前
zz发布了新的文献求助10
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810536
求助须知:如何正确求助?哪些是违规求助? 3355025
关于积分的说明 10373819
捐赠科研通 3071528
什么是DOI,文献DOI怎么找? 1687034
邀请新用户注册赠送积分活动 811366
科研通“疑难数据库(出版商)”最低求助积分说明 766619