亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review

预言 背景(考古学) 健康管理体系 系统工程 风险分析(工程) 过程(计算) 电池(电) 工程类 可靠性工程 计算机科学 医学 病理 替代医学 功率(物理) 古生物学 量子力学 物理 操作系统 生物
作者
Sahar Khaleghi,Md Sazzad Hosen,Joeri Van Mierlo,Maitane Berecibar
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:192: 114224-114224 被引量:12
标识
DOI:10.1016/j.rser.2023.114224
摘要

Prognostics and health management (PHM) has emerged as a vital research discipline for optimizing the maintenance of operating systems by detecting health degradation and accurately predicting their remaining useful life. In the context of lithium-ion batteries, PHM methodologies have gained significant attention due to their potential for enhancing battery maintenance and ensuring safe and reliable operation. Among the various approaches, data-driven methodologies, particularly those leveraging machine learning (ML) models, have gained interest for their accuracy and simplicity. To develop an optimized data-driven PHM system for batteries, a comprehensive understanding of each step involved in the PHM process is crucial. This review paper aims to address this need by providing a thorough analysis of the different phases of battery PHM, encompassing data acquisition, feature engineering, health diagnosis, and health prognosis. In contrast to previous review papers that primarily focused on battery health diagnosis and prognosis methods, this work goes beyond by encompassing all essential steps necessary for developing a tailored PHM methodology specific to lithium-ion batteries. By covering data acquisition methods, feature engineering techniques, as well as health diagnosis and prognosis methods, this paper fills a significant gap in the existing literature. It serves as a comprehensive roadmap for researchers and practitioners aiming to develop PHM systems for lithium-ion batteries using ML techniques. With its in-depth analysis and critical insights, this review paper constitutes a substantial contribution to the field. It provides valuable guidance for designing effective PHM methodologies and paves the way for further advancements in battery maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
24秒前
WeiMooo完成签到 ,获得积分10
41秒前
1分钟前
xxxxxxh发布了新的文献求助10
1分钟前
xxxxxxh完成签到,获得积分10
1分钟前
maria_takayama完成签到,获得积分10
1分钟前
1分钟前
徐小徐发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Yini应助科研通管家采纳,获得10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
在水一方应助徐小徐采纳,获得10
1分钟前
提米橘发布了新的文献求助20
1分钟前
充电宝应助free采纳,获得10
2分钟前
2分钟前
2分钟前
其乐融融发布了新的文献求助10
3分钟前
3分钟前
3分钟前
提米橘发布了新的文献求助20
3分钟前
Owen应助机灵笑容采纳,获得10
3分钟前
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
Yini应助科研通管家采纳,获得10
3分钟前
3分钟前
358489228完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
贲如音发布了新的文献求助10
4分钟前
4分钟前
sherry关注了科研通微信公众号
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048155
求助须知:如何正确求助?哪些是违规求助? 3585960
关于积分的说明 11395350
捐赠科研通 3312840
什么是DOI,文献DOI怎么找? 1822685
邀请新用户注册赠送积分活动 894642
科研通“疑难数据库(出版商)”最低求助积分说明 816439