Shadowcast: Stealthy Data Poisoning Attacks Against Vision-Language Models

计算机安全 计算机科学 自然语言处理 人工智能
作者
Yuancheng Xu,Jiarui Yao,Manli Shu,Yanchao Sun,Zichu Wu,Ning Yu,Tom Goldstein,Furong Huang
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2402.06659
摘要

Vision-Language Models (VLMs) excel in generating textual responses from visual inputs, but their versatility raises security concerns. This study takes the first step in exposing VLMs' susceptibility to data poisoning attacks that can manipulate responses to innocuous, everyday prompts. We introduce Shadowcast, a stealthy data poisoning attack where poison samples are visually indistinguishable from benign images with matching texts. Shadowcast demonstrates effectiveness in two attack types. The first is a traditional Label Attack, tricking VLMs into misidentifying class labels, such as confusing Donald Trump for Joe Biden. The second is a novel Persuasion Attack, leveraging VLMs' text generation capabilities to craft persuasive and seemingly rational narratives for misinformation, such as portraying junk food as healthy. We show that Shadowcast effectively achieves the attacker's intentions using as few as 50 poison samples. Crucially, the poisoned samples demonstrate transferability across different VLM architectures, posing a significant concern in black-box settings. Moreover, Shadowcast remains potent under realistic conditions involving various text prompts, training data augmentation, and image compression techniques. This work reveals how poisoned VLMs can disseminate convincing yet deceptive misinformation to everyday, benign users, emphasizing the importance of data integrity for responsible VLM deployments. Our code is available at: https://github.com/umd-huang-lab/VLM-Poisoning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Tycoon采纳,获得10
1秒前
1秒前
百里听白发布了新的文献求助30
1秒前
研友_VZG7GZ应助heiye采纳,获得10
1秒前
S羊羊完成签到,获得积分10
2秒前
可爱的函函应助lionel采纳,获得10
3秒前
延续发布了新的文献求助10
3秒前
3秒前
Raven应助滴滴采纳,获得10
3秒前
Criminology34应助滴滴采纳,获得10
4秒前
Owen应助滴滴采纳,获得10
4秒前
华仔应助滴滴采纳,获得10
4秒前
高兴白莲发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
10秒前
慕青应助jias采纳,获得10
11秒前
忧虑的南莲完成签到,获得积分10
12秒前
Tycoon发布了新的文献求助10
12秒前
小杭76应助lyman采纳,获得10
13秒前
CipherSage应助Andy采纳,获得10
14秒前
灵巧的听枫完成签到,获得积分10
14秒前
滴滴发布了新的文献求助10
15秒前
xfYan完成签到,获得积分10
15秒前
heiye发布了新的文献求助10
16秒前
16秒前
超级的鞅发布了新的文献求助10
18秒前
20秒前
21秒前
21秒前
lele发布了新的文献求助10
22秒前
大个应助S羊羊采纳,获得10
23秒前
24秒前
liars完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
深情安青应助jias采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164