GPL-GNN: Graph prompt learning for graph neural network

计算机科学 机器学习 人工智能 图形 学习迁移 瓶颈 标记数据 任务(项目管理) 无监督学习 理论计算机科学 嵌入式系统 经济 管理
作者
Zihao Chen,Ying Wang,Fuyuan Ma,Hao Yuan,Xin Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111391-111391
标识
DOI:10.1016/j.knosys.2024.111391
摘要

Despite the impressive results achieved in many areas of graph machine learning, through graph representation learning using supervised learning techniques, the limited availability of labeled training data has led to a bottleneck in terms of performance. To address this challenge, transfer learning has been proposed as an effective solution. It involves designing pre-training methods in an unsupervised manner to learn representations, which are then adapted to downstream tasks with limited labeled data. However, transfer learning can suffer from negative transfer when there is a major gap between the objectives of pre-training and the downstream tasks. To overcome these challenges, we introduce a novel framework, graph prompt learning-graph neural network (GPL-GNN), to narrow the gap between different tasks. GPL-GNN employs unsupervised methods, which require no labeled data, and incorporates unsupervised pre-trained structural representations into downstream tasks as prompt information. This information is combined with downstream data to train GNNs adapting them to the downstream tasks, and resulting in more adaptive, task-specific representations. Furthermore, the ability of GPL-GNN to learn graph representations without the constraints of pre-training and fine-tuning for model consistency increases the flexibility in choosing task-specific GNNs. In addition, the introduction of prototype networks as classification heads enables quick adaptation of GPL-GNNs to downstream tasks. Finally, we conduct extensive experiments on a benchmark dataset to demonstrate the effectiveness of GPL-GNN. The code is available in: https://github.com/chenzihaoww/GPL-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
宇宙少女发布了新的文献求助10
5秒前
奈何发布了新的文献求助10
6秒前
cst发布了新的文献求助20
6秒前
精英刺客发布了新的文献求助10
6秒前
星辰大海应助小熊采纳,获得10
7秒前
zhangxinxin发布了新的文献求助10
8秒前
8秒前
leena发布了新的文献求助10
10秒前
科研通AI2S应助zcl采纳,获得10
11秒前
小熊饼干发布了新的文献求助10
13秒前
15秒前
等待的花生完成签到,获得积分10
16秒前
英姑应助精英刺客采纳,获得10
16秒前
自然代萱完成签到,获得积分10
18秒前
能干的新筠完成签到,获得积分10
20秒前
Orange应助THJ123采纳,获得10
21秒前
小熊发布了新的文献求助10
21秒前
22秒前
干饭发布了新的文献求助10
22秒前
24秒前
26秒前
自然代萱发布了新的文献求助10
27秒前
27秒前
赘婿应助leena采纳,获得10
28秒前
DduYy完成签到,获得积分10
29秒前
自信的谷南完成签到,获得积分10
31秒前
THJ123发布了新的文献求助10
32秒前
33秒前
科研通AI5应助wangbq采纳,获得10
33秒前
干饭完成签到,获得积分10
34秒前
leena完成签到,获得积分10
35秒前
37秒前
123完成签到,获得积分10
37秒前
小熊完成签到,获得积分10
39秒前
谨慎的擎宇完成签到,获得积分10
45秒前
科研通AI2S应助kyrie采纳,获得10
47秒前
小熊饼干完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549