A Spatial–Temporal Gated Network for Credit Card Fraud Detection by Learning Transactional Representations

交易型领导 计算机科学 数据库事务 交易数据 代表(政治) 信用卡 事务处理 信用卡诈骗 领域(数学) 人工智能 机器学习 数据挖掘 数据库 万维网 心理学 社会心理学 数学 政治 政治学 纯数学 法学 付款
作者
Yu Xie,Guanjun Liu,MengChu Zhou,Lifei Wei,Honghao Zhu,Ri‐Gui Zhou,Lei Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6978-6991 被引量:7
标识
DOI:10.1109/tase.2023.3335145
摘要

Credit card fraud detection (CCFD) is an important issue concerned by financial institutions. Existing methods generally employ aggregated or raw features as their representations to train their detection models. Yet such features tend to fall short of effectively exposing the characteristics of various frauds. In this work, we propose a spatial-temporal gated network (STGN) to automatically learn new informative transactional representations containing users' transactional behavioral information for CCFD. A gated recurrent neural net unit is specifically constructed with a time-aware gate and location-aware gate to extract users' spatial and temporal transactional behaviors. A spatial-temporal attention module is designed to expose the transaction motive of users in their historical transactional behaviors, which allows the proposed model to better extract the fraudulent characteristics from successive transactions with time and location information. A representation interaction module is offered to make rational decisions and learn compositive transactional representations. A real-world transaction dataset is used in experiments to verify the efficacy of the learned new representations. The results demonstrate that our proposed model outperforms the state-of-the-art ones, thus greatly advancing the field of CCFD. Note to Practitioners —The features of transaction records reflect the characteristics of users' transactional behaviors. Therefore, effective features are critical for accurate CCFD. However, fraudsters often pretend to be legitimate users during transactions to deceive the CCFD system. As a result, fraudulent behaviors become concealed within legitimate ones, signifying that original features are inadequate for accurate CCFD. Thus, it is imperative for researchers and practitioners to extract new features that can well expose fraud characteristics. While existing methods employing some transaction aggregation strategies can spot certain fraudulent behaviors, they fail to clearly cluster all the anomalous behaviors and distinguish them from legitimate behaviors. Therefore, this work is driven by the urgent demand to extract new informative features for CCFD. Its primary focus is to unveil the aggregation of fraudulent transactional behaviors from both temporal and spatial perspectives, enabling more accurate CCFD. Specifically, this work introduces a new STGN model that automatically learns new transactional representations incorporating users' transactional behavioral information for CCFD. By comprehensively considering the time interval and location interval of consecutive user transactions, we thoroughly reveal the temporal and spatial aggregation of fraudulent behavior, which provides valuable insights for CCFD practitioners: 1) employing features that integrate the behavioral characteristics of fraudsters instead of the original features can enhance the model's capability to identify frauds, and 2) taking into account the time and location intervals of users' consecutive historical transactions can better uncover the behavioral characteristics of fraudsters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的艳完成签到,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
wardell发布了新的文献求助10
2秒前
无聊的艳发布了新的文献求助10
3秒前
光而不耀发布了新的文献求助10
4秒前
one完成签到,获得积分10
4秒前
lune完成签到 ,获得积分10
4秒前
猫红茶完成签到,获得积分20
5秒前
想做只小博狗完成签到,获得积分10
6秒前
6秒前
ding应助yuan采纳,获得10
6秒前
hui发布了新的文献求助10
7秒前
慕青应助Georges-09采纳,获得10
8秒前
四块五完成签到,获得积分10
10秒前
ff完成签到,获得积分20
11秒前
11秒前
慕青应助22采纳,获得10
12秒前
大懒猪完成签到,获得积分10
13秒前
ll发布了新的文献求助10
14秒前
猫红茶关注了科研通微信公众号
15秒前
15秒前
打打应助别喝他的酒采纳,获得10
15秒前
无花果应助别喝他的酒采纳,获得10
15秒前
16秒前
大脸猫4811发布了新的文献求助10
16秒前
我的小宇宙呢完成签到,获得积分10
17秒前
小橙子应助cyh采纳,获得20
17秒前
18秒前
xc发布了新的文献求助20
19秒前
Scyyyyy完成签到,获得积分10
20秒前
我是老大应助小盆呐采纳,获得10
20秒前
hui完成签到,获得积分10
20秒前
我是老大应助JodieZhu采纳,获得30
20秒前
22发布了新的文献求助10
24秒前
huyulele完成签到,获得积分10
24秒前
24秒前
AlexLee完成签到,获得积分10
25秒前
Chen完成签到,获得积分10
25秒前
26秒前
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4045419
求助须知:如何正确求助?哪些是违规求助? 3583043
关于积分的说明 11388210
捐赠科研通 3310462
什么是DOI,文献DOI怎么找? 1821919
邀请新用户注册赠送积分活动 893991
科研通“疑难数据库(出版商)”最低求助积分说明 815962