Computational fluid dynamics and artificial neural network‐based analysis and forecasting of wind effects on obliquely parallel multiple building models using categorical variable encoding

计算流体力学 范畴变量 人工神经网络 可预测性 空气动力学 斜格 风向 计算机科学 风速 人工智能 数学 工程类 机器学习 统计 气象学 物理 航空航天工程 语言学 哲学
作者
Prasenjit Sanyal,Sujit Kumar Dalui
出处
期刊:Structural Design of Tall and Special Buildings [Wiley]
卷期号:33 (8) 被引量:4
标识
DOI:10.1002/tal.2105
摘要

Summary This research investigates the influence of wind on four closely spaced parallel building models using computational fluid dynamics (CFD). The buildings are positioned either perpendicular to the wind direction or at various oblique angles. The aerodynamic results obtained for these buildings in an interfering condition are compared to those of an isolated tall building using the interference and obliquity effect (IOE) factor. Graphical comparisons are made among the different models and faces, considering various obliquity angles (OAs). The inner building models exhibit higher pressure and force coefficients at higher OAs. The variation of pressure coefficients along the horizontal peripheral direction is also analyzed, and the trade‐offs of higher and lower OAs are discussed for the different building models. Furthermore, an artificial neural network (ANN) is trained using surface pressure coefficients from approximately 6000 data points distributed over different facets of building models. Categorical encoding is employed using one‐hot encoding‐based dummy variables for different building models, while numerical variables such as OA and X, Y, and Z coordinates are included as input for the ANN. The ANN is trained using a total of 238,340 data points (considering different building models and different OA scenarios), and its parameters are monitored during training to minimize errors and achieve high predictability. Finally, a representative case is used to plot the pressure contour obtained from the trained ANN, which is shown to be highly comparable to the CFD‐based contour.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉巨人应助端庄毛巾采纳,获得10
1秒前
1秒前
2秒前
wdb发布了新的文献求助10
3秒前
3秒前
大大小小发布了新的文献求助10
6秒前
Eason完成签到,获得积分10
6秒前
lll发布了新的文献求助10
6秒前
7秒前
Lucas应助111采纳,获得10
7秒前
无私的芹应助科研通管家采纳,获得10
9秒前
无私的芹应助科研通管家采纳,获得10
9秒前
无私的芹应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
zyz发布了新的文献求助10
10秒前
桐桐应助高挑的哈密瓜采纳,获得10
10秒前
欧阳正义发布了新的文献求助10
12秒前
12秒前
hhkj完成签到,获得积分10
12秒前
13秒前
铃兰完成签到,获得积分10
13秒前
111完成签到,获得积分20
14秒前
maxrain完成签到,获得积分10
15秒前
nojivv完成签到,获得积分10
16秒前
16秒前
111发布了新的文献求助10
17秒前
小高发布了新的文献求助10
17秒前
外向跳跳糖完成签到,获得积分10
17秒前
赵雪萌完成签到,获得积分10
17秒前
潇洒大白菜真实的钥匙完成签到,获得积分20
18秒前
18秒前
19秒前
Nooooo发布了新的文献求助10
22秒前
Lichun完成签到,获得积分10
22秒前
yyy发布了新的文献求助10
22秒前
成就寒凡发布了新的文献求助10
23秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906187
求助须知:如何正确求助?哪些是违规求助? 3451940
关于积分的说明 10866764
捐赠科研通 3177313
什么是DOI,文献DOI怎么找? 1755327
邀请新用户注册赠送积分活动 848748
科研通“疑难数据库(出版商)”最低求助积分说明 791265