NIR spectroscopy—CNN‐enabled chemometrics for multianalyte monitoring in microbial fermentation

化学计量学 偏最小二乘回归 分析物 过程分析技术 计算机科学 化学 人工智能 卷积神经网络 校准 模式识别(心理学) 生物系统 色谱法 机器学习 数学 统计 在制品 工程类 生物 运营管理
作者
Shantanu Banerjee,Shyamapada Mandal,Naveen G. Jesubalan,Rijul Jain,Anurag S. Rathore
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (6): 1803-1819 被引量:11
标识
DOI:10.1002/bit.28681
摘要

Abstract As the biopharmaceutical industry looks to implement Industry 4.0, the need for rapid and robust analytical characterization of analytes has become a pressing priority. Spectroscopic tools, like near‐infrared (NIR) spectroscopy, are finding increasing use for real‐time quantitative analysis. Yet detection of multiple low‐concentration analytes in microbial and mammalian cell cultures remains an ongoing challenge, requiring the selection of carefully calibrated, resilient chemometrics for each analyte. The convolutional neural network (CNN) is a puissant tool for processing complex data and making it a potential approach for automatic multivariate spectral processing. This work proposes an inception module‐based two‐dimensional (2D) CNN approach (I‐CNN) for calibrating multiple analytes using NIR spectral data. The I‐CNN model, coupled with orthogonal partial least squares (PLS) preprocessing, converts the NIR spectral data into a 2D data matrix, after which the critical features are extracted, leading to model development for multiple analytes. Escherichia coli fermentation broth was taken as a case study, where calibration models were developed for 23 analytes, including 20 amino acids, glucose, lactose, and acetate. The I‐CNN model result statistics depicted an average R 2 values of prediction 0.90, external validation data set 0.86 and significantly lower root mean square error of prediction values ∼0.52 compared to conventional regression models like PLS. Preprocessing steps were applied to I‐CNN models to evaluate any augmentation in prediction performance. Finally, the model reliability was assessed via real‐time process monitoring and comparison with offline analytics. The proposed I‐CNN method is systematic and novel in extracting distinctive spectral features from a multianalyte bioprocess data set and could be adapted to other complex cell culture systems requiring rapid quantification using spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
机智的芒果完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
打打应助李美兰采纳,获得10
2秒前
2秒前
laoxie301发布了新的文献求助10
2秒前
小正完成签到,获得积分10
2秒前
在水一方应助吴学成采纳,获得10
3秒前
青云冰城完成签到,获得积分10
3秒前
流香发布了新的文献求助10
3秒前
wpz发布了新的文献求助10
3秒前
3秒前
CodeCraft应助XIAO采纳,获得10
5秒前
HHHHHHH发布了新的文献求助10
5秒前
wuwa完成签到,获得积分10
5秒前
马畅完成签到 ,获得积分10
6秒前
刘尚韬发布了新的文献求助10
6秒前
张静完成签到 ,获得积分10
6秒前
四方完成签到,获得积分10
6秒前
6秒前
Li发布了新的文献求助10
6秒前
8秒前
9秒前
欣慰阑悦完成签到,获得积分10
10秒前
加鱼发布了新的文献求助10
10秒前
YangYue完成签到,获得积分10
10秒前
流香完成签到,获得积分10
12秒前
zwh完成签到,获得积分10
13秒前
karry完成签到,获得积分20
13秒前
阔达蓝血发布了新的文献求助10
13秒前
aaaaa完成签到,获得积分20
13秒前
13秒前
2_3_10完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
哈哈哈发布了新的文献求助30
14秒前
15秒前
熹微完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145745
求助须知:如何正确求助?哪些是违规求助? 4342946
关于积分的说明 13524885
捐赠科研通 4183949
什么是DOI,文献DOI怎么找? 2294322
邀请新用户注册赠送积分活动 1294744
关于科研通互助平台的介绍 1237801