On the Use of Spatial Graphs for Performance Degradation Root-Cause Analysis Toward Self-Healing Mobile Networks

计算机科学 根本原因分析 背景(考古学) 蜂窝网络 根本原因 卷积神经网络 无线网络 人工智能 故障管理 机器学习 分布式计算 数据挖掘 无线 计算机网络 可靠性工程 电信 工程类 古生物学 结构工程 节点(物理) 生物
作者
Luís Mata,Marco Sousa,Pedro Vieira,Maria Paula Queluz,António Rodrigues
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 20490-20508 被引量:1
标识
DOI:10.1109/access.2024.3361284
摘要

On the road to the sixth generation of cellular networks (6G), the need to ensure a sustainable usage of natural resources, amid increased competition and cost pressures, has driven the adoption of Self-Healing Mobile Networks to enhance operational efficiency of current and future wireless networks. This paradigm shift relies on Artificial Intelligence (AI) to increase automation of network functions, notably by applying predictive fault detection and automatic root-cause analysis. In this context, this paper proposes a Deep Learning (DL) model for self-healing operations based on a Spatial Graph Convolutional Neural Network (SGCN), which is applied to evaluate the performance degradation of Base Stations (BSs) and uncover the underlying root-causes. The advantages of the proposed DL model are threefold. Firstly, it is especially suited for wireless network applications, leveraging the SGCN to account for spatial dependencies among BSs and their physical characteristics. Secondly, the proposed model offers the flexibility to process diverse types of predictive features, including Performance Management (PM), Fault Management (FM), or other data types. Thirdly, it incorporates an explainability module that pinpoints the input features, such as PM counters, with the most significant influence on BS performance, thereby shedding light on its root-cause factors. The proposed model was evaluated on a live 4G network dataset and the results confirmed its effectiveness in identifying BS performance degradation. An F1-score of 89.6% was achieved in the classification of performance failures, which includes a 27% reduction in false negatives compared to prior research outcomes. In a live network environment, this reduction translates into substantial improvements in Quality of Experience (QoE) for the end users and cost savings for the Mobile Network Operators (MNOs).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cy-coolorgan完成签到,获得积分10
刚刚
ZRR完成签到,获得积分10
刚刚
JamesPei应助苦学僧采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
Qwe完成签到,获得积分10
3秒前
engine完成签到,获得积分10
4秒前
yy完成签到,获得积分10
7秒前
英俊的铭应助liusha采纳,获得10
9秒前
科目三应助柔弱的苗条采纳,获得10
11秒前
科研通AI6应助自觉绿草采纳,获得10
11秒前
muqi完成签到,获得积分10
11秒前
小于完成签到,获得积分10
12秒前
12秒前
星辰大海应助机智灯泡采纳,获得10
13秒前
14秒前
哈哈哈发布了新的文献求助10
18秒前
猫蒲发布了新的文献求助10
20秒前
科研通AI6应助yier采纳,获得10
20秒前
小杨完成签到 ,获得积分10
21秒前
年轻真好啊完成签到,获得积分10
22秒前
22秒前
Ally完成签到,获得积分10
24秒前
star应助汪寒采纳,获得10
25秒前
25秒前
26秒前
26秒前
八月宁静完成签到,获得积分10
26秒前
百羊发布了新的文献求助10
26秒前
搜集达人应助文静萤采纳,获得10
28秒前
小于完成签到,获得积分20
28秒前
wangym868完成签到,获得积分10
29秒前
29秒前
小易发布了新的文献求助10
30秒前
Lillian_7发布了新的文献求助10
31秒前
tjuer发布了新的文献求助10
32秒前
科研通AI2S应助隐形的baby采纳,获得10
32秒前
丘比特应助猫蒲采纳,获得10
32秒前
关关完成签到 ,获得积分10
34秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073