MPTN: A message-passing transformer network for drug repurposing from knowledge graph

计算机科学 重新调整用途 嵌入 变压器 药物重新定位 知识图 消息传递 图形 数据挖掘 人工智能 知识库 实体链接 机器学习 理论计算机科学 分布式计算 药品 物理 量子力学 精神科 心理学 电压 生物 生态学
作者
Yuanxin Liu,Guoming Sang,Zhi Liu,Yilin Pan,Junkai Cheng,Yijia Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107800-107800
标识
DOI:10.1016/j.compbiomed.2023.107800
摘要

Drug repurposing (DR) based on knowledge graphs (KGs) is challenging, which uses knowledge graph reasoning models to predict new therapeutic pathways for existing drugs. With the rapid development of computing technology and the growing availability of validated biomedical data, various knowledge graph-based methods have been widely used to analyze and process complex and novel data to discover new indications for given drugs. However, existing methods need to be improved in extracting semantic information from contextual triples of biomedical entities. In this study, we propose a message-passing transformer network named MPTN based on knowledge graph for drug repurposing. Firstly, CompGCN is used as precoder to jointly aggregate entity and relation embeddings. Then, to fully capture the semantic information of entity context triples, the message propagating transformer module is designed. The module integrates the transformer into the message passing mechanism and incorporates the attention weight information of computing entity context triples into the entity embedding to update the entity embedding. Next, the residual connection is introduced to retain information as much as possible and improve prediction accuracy. Finally, MPTN utilizes the InteractE module as the decoder to obtain heterogeneous feature interactions in entity and relation representations and predict new pathways for drug treatment. Experiments on two datasets show that the model is superior to the existing knowledge graph embedding (KGE) learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布吉岛呀发布了新的文献求助10
刚刚
刚刚
lala发布了新的文献求助10
1秒前
申贺臣发布了新的文献求助10
2秒前
活泼的番茄完成签到,获得积分10
3秒前
3秒前
充电宝应助风yiya采纳,获得10
3秒前
4秒前
4秒前
Akim应助小张采纳,获得10
4秒前
飞飞完成签到,获得积分10
4秒前
5秒前
Hermione完成签到,获得积分10
5秒前
5秒前
超帅的怡完成签到,获得积分10
5秒前
6秒前
zzz完成签到,获得积分10
6秒前
7秒前
8秒前
ufofly730完成签到 ,获得积分10
8秒前
搜集达人应助不爱喝可乐采纳,获得10
8秒前
说书人发布了新的文献求助10
9秒前
zhenyu完成签到,获得积分10
9秒前
9秒前
zyf发布了新的文献求助10
10秒前
10秒前
doctorbba发布了新的文献求助30
10秒前
fh完成签到,获得积分20
10秒前
安东路完成签到,获得积分10
10秒前
不要加糖发布了新的文献求助10
12秒前
欧阳完成签到 ,获得积分10
12秒前
12秒前
13秒前
桂WGH完成签到,获得积分10
13秒前
fh发布了新的文献求助30
13秒前
不爱喝可乐完成签到,获得积分20
14秒前
国服懒羊羊完成签到,获得积分10
14秒前
15秒前
啵啵洋发布了新的文献求助30
16秒前
闽闽酱完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150