Machine learning applied to apatite compositions for determining mineralization potential

磷灰石 矿化(土壤科学) 地球化学 地质学 矿物学 土壤科学 土壤水分
作者
Yuyu Zheng,Bo Xu,David R. Lentz,Xiaoyan Yu,Zengqian Hou,Tao Wang
出处
期刊:American Mineralogist [Mineralogical Society of America]
卷期号:109 (8): 1394-1405 被引量:9
标识
DOI:10.2138/am-2023-9115
摘要

Abstract Apatite major and trace element chemistry is a widely used tracer of mineralization as it sensitively records the characteristics of the magmatic-hydrothermal system at the time of its crystallization. Previous studies have proposed useful indicators and binary discrimination diagrams to distinguish between apatites from mineralized and unmineralized rocks; however, their efficiency has been found to be somewhat limited in other systems and larger-scale data sets. This work applied a machine learning (ML) method to classify the chemical compositions of apatites from both fertile and barren rocks, aiming to help determine the mineralization potential of an unknown system. Approximately 13 328 apatite compositional analyses were compiled and labeled from 241 locations in 27 countries worldwide, and three apatite geochemical data sets were established for XGBoost ML model training. The classification results suggest that the developed models (accuracy: 0.851–0.992; F1 score: 0.839–0.993) are much more accurate and efficient than conventional methods (accuracy: 0.242–0.553). Feature importance analysis of the models demonstrates that Cl, F, S, V, Sr/Y, V/Y, Eu*, (La/Yb)N, and La/Sm are important variables in apatite that discriminate fertile and barren host rocks and indicates that V/Y and Cl/F ratios and the S content, in particular, are crucial parameters to discriminating metal enrichment and mineralization potential. This study suggests that ML is a robust tool for processing high-dimensional geochemical data and presents a novel approach that can be applied to mineral exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的谷完成签到,获得积分10
刚刚
ZZZ完成签到,获得积分10
1秒前
3秒前
Muncy发布了新的文献求助10
3秒前
Keyto7应助淡然的大雁采纳,获得20
4秒前
不安涵山发布了新的文献求助30
4秒前
Li发布了新的文献求助10
7秒前
ZZZ发布了新的文献求助10
8秒前
hubanj完成签到,获得积分10
11秒前
小二郎应助XiYang采纳,获得10
11秒前
卡卡西发布了新的文献求助20
12秒前
充电宝应助xu采纳,获得10
21秒前
ds完成签到,获得积分10
22秒前
22秒前
LALALA发布了新的文献求助10
22秒前
社科狗发布了新的文献求助10
23秒前
24秒前
华仔应助Ting采纳,获得10
27秒前
XiYang发布了新的文献求助10
27秒前
ZY发布了新的文献求助10
28秒前
ycp完成签到,获得积分10
30秒前
一诺相许完成签到 ,获得积分10
31秒前
应俊完成签到 ,获得积分10
33秒前
Muncy发布了新的文献求助30
34秒前
踏实三问完成签到,获得积分10
34秒前
大个应助安静碧灵采纳,获得10
34秒前
星辰大海应助Ting采纳,获得10
35秒前
woheyumi完成签到 ,获得积分10
35秒前
36秒前
韦小强发布了新的文献求助10
36秒前
37秒前
38秒前
38秒前
38秒前
xuanxuan发布了新的文献求助10
40秒前
Ting发布了新的文献求助10
42秒前
CDC发布了新的文献求助10
42秒前
科研通AI6应助点墨采纳,获得10
42秒前
嘿嘿发布了新的文献求助10
44秒前
LY发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521