Combining a deep learning model with clinical data better predicts hepatocellular carcinoma behavior following surgery

医学 肝细胞癌 比例危险模型 危险系数 肝移植 队列 深度学习 内科学 肿瘤科 预测模型 人工智能 外科 总体生存率 移植 计算机科学 置信区间
作者
Benoît Schmauch,Sarah Elsoukkary,Amika Moro,Roma Raj,Chase J. Wehrle,Kazunari Sasaki,Julien Caldéraro,Patrick Sin‐Chan,Federico Aucejo,Daniel Roberts
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:: 100360-100360 被引量:1
标识
DOI:10.1016/j.jpi.2023.100360
摘要

Hepatocellular carcinoma (HCC) is among the most common cancers worldwide, and tumor recurrence following liver resection or transplantation is one of the highest contributors to mortality in HCC patients after surgery. Using artificial intelligence (AI), we developed an interdisciplinary model to predict HCC recurrence and patient survival following surgery. We collected whole-slide H&E images, clinical variables, and follow-up data from 300 patients with HCC who underwent transplant and 169 patients who underwent resection at the Cleveland Clinic. A deep learning model was trained to predict recurrence-free survival (RFS) and disease-specific survival (DSS) from the H&E-stained slides. Repeated cross-validation splits were used to compute robust C-index estimates, and the results were compared to those obtained by fitting a Cox proportional hazard model using only clinical variables. While the deep learning model alone was predictive of recurrence and survival among patients in both cohorts, integrating the clinical and histologic models significantly increased the C-index in each cohort. In every subgroup analyzed, we found that a combined clinical and deep learning model better predicted post-surgical outcome in HCC patients compared to either approach independently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LGJ完成签到,获得积分10
刚刚
yyyyyy发布了新的文献求助10
刚刚
ga发布了新的文献求助10
1秒前
学术小白完成签到,获得积分10
2秒前
辛苦科研人完成签到 ,获得积分10
2秒前
3秒前
冷静凌翠发布了新的文献求助10
5秒前
8秒前
明鹄完成签到 ,获得积分10
9秒前
9秒前
爱小妍发布了新的文献求助10
12秒前
14秒前
15秒前
ga完成签到,获得积分20
15秒前
何小明发布了新的文献求助10
17秒前
冷静凌翠完成签到,获得积分10
17秒前
19秒前
nadia完成签到,获得积分10
19秒前
wangzai发布了新的文献求助10
19秒前
今后应助谦让夜香采纳,获得10
20秒前
yyyyyy完成签到,获得积分10
20秒前
20秒前
义气山水发布了新的文献求助10
22秒前
skbkbe发布了新的文献求助20
22秒前
123完成签到,获得积分10
23秒前
赘婿应助cc采纳,获得10
23秒前
24秒前
刘欢发布了新的文献求助10
24秒前
若尘驳回了Dtan应助
25秒前
caomin发布了新的文献求助10
26秒前
汪简单发布了新的文献求助10
26秒前
27秒前
27秒前
流浪随笔完成签到,获得积分20
28秒前
南风发布了新的文献求助10
30秒前
31秒前
义气山水完成签到,获得积分10
32秒前
33秒前
啊撒网大大e完成签到,获得积分10
33秒前
熊猫小肿完成签到,获得积分10
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838478
求助须知:如何正确求助?哪些是违规求助? 3380795
关于积分的说明 10515867
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821757
科研通“疑难数据库(出版商)”最低求助积分说明 772935