已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence‐Based Delirium Prediction Model for Post‐Cardiac Surgery Patients: A Scoping Review

作者
Chuanyu Qin,Lu Zeng,Jinbo Zhang,Juan Zhang,Ming Tao,Jiamei Zhou
出处
期刊:Journal of Advanced Nursing [Wiley]
标识
DOI:10.1111/jan.70456
摘要

ABSTRACT Background Delirium is a common complication following cardiac surgery and significantly affects patient prognosis and quality of life. Recently, the application of artificial intelligence (AI) has gained prominence in predicting and assessing the risk of postoperative delirium, showing considerable potential in clinical settings. Objective This scoping review summarises existing research on AI‐based prediction models for post‐cardiac surgery delirium and provides insights and recommendations for clinical practice and future research. Methods Following the PRISMA‐ScR (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses extension for Scoping Reviews) guidelines, eight databases were searched: China National Knowledge Infrastructure, Wanfang Database, China Biomedical Literature Database, Virtual Information Platform, PubMed, Web of Science, Medline, and Embase. Studies meeting the inclusion criteria were screened, and data were extracted on surgery type, delirium assessment tools, predictive factors, and AI‐based prediction models. The search covered database inception through January 12, 2025. Two researchers independently conducted the literature review and data analysis. Results Ten studies from China, Canada, and Germany involving 11,702 participants were included. The reported incidence of postoperative delirium ranged from 5.56% to 34%. The most commonly used assessment tools were Confusion Assessment Method for the Intensive Care Unit, Diagnostic and Statistical Manual of Mental Disorders‐5, and Intensive Care Delirium Screening Checklist. Key predictive factors included age, cardiopulmonary bypass time, cerebrovascular disease, and pain scores. AI‐based prediction models were primarily developed using R (6/10, 60%) and Python (4/10, 40%). Model performance, as measured by the area under the curve, ranged from 0.544 to 0.92. Among these models, Random Forest (RF) was the most effective (5/10, 50%), followed by XGBoost (3/10, 30%) and Artificial Neural Networks (2/10, 20%). Conclusion AI‐based models show promise for predicting postoperative delirium in cardiac surgery patients. Future studies should prioritise integrating these models into clinical workflows, conducting rigorous multicenter external validation, and incorporating dynamic, time‐varying perioperative variables to enhance generalizability and clinical utility. Reporting Method This review followed the PRISMA‐ScR (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses extension for Scoping Reviews) guidelines. Patient or Public Contribution This study did not include patient or public involvement in its design, conduct, or reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plant完成签到 ,获得积分10
刚刚
小余同学完成签到 ,获得积分10
1秒前
王火火完成签到 ,获得积分10
1秒前
kaka完成签到,获得积分0
1秒前
英属维尔京群岛完成签到 ,获得积分10
1秒前
TiAmo完成签到 ,获得积分10
1秒前
莫力布林完成签到 ,获得积分10
2秒前
烂漫靖柏完成签到 ,获得积分10
2秒前
留胡子的邑完成签到,获得积分10
2秒前
悄悄拔尖儿完成签到 ,获得积分10
2秒前
joker完成签到 ,获得积分0
2秒前
zzr发布了新的文献求助10
2秒前
高挑的梦芝完成签到,获得积分10
2秒前
2秒前
zhong完成签到 ,获得积分10
2秒前
ty完成签到 ,获得积分10
3秒前
ZM完成签到 ,获得积分10
3秒前
guan完成签到,获得积分20
3秒前
落寞飞烟完成签到,获得积分10
3秒前
我是老大应助长情无心采纳,获得10
4秒前
眼睛大的胡萝卜完成签到 ,获得积分10
4秒前
甜美的千青完成签到 ,获得积分10
5秒前
5秒前
6秒前
Fqdgest完成签到,获得积分10
6秒前
认真的不斜完成签到 ,获得积分10
7秒前
顺其自然完成签到 ,获得积分10
7秒前
会吐泡泡的小新完成签到 ,获得积分10
8秒前
去码头整点薯条完成签到 ,获得积分10
8秒前
小坤不慌完成签到 ,获得积分10
9秒前
zzzz发布了新的文献求助10
10秒前
灰色白面鸮完成签到,获得积分10
10秒前
耶耶完成签到 ,获得积分10
10秒前
远方完成签到 ,获得积分10
11秒前
春夏爱科研完成签到,获得积分10
11秒前
只如初完成签到 ,获得积分10
11秒前
12秒前
库儿拉索完成签到,获得积分10
12秒前
打外星人和僵尸完成签到 ,获得积分20
12秒前
张元东完成签到 ,获得积分10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Optics of Liquid Crystal Displays, 2nd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616834
求助须知:如何正确求助?哪些是违规求助? 4701245
关于积分的说明 14912768
捐赠科研通 4746551
什么是DOI,文献DOI怎么找? 2549094
邀请新用户注册赠送积分活动 1512259
关于科研通互助平台的介绍 1474024

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10