Active Polymer-Templated Porous Metal Oxide Nanospheres with Tailored Single-Atom Modification for Olfactory Intelligence

作者
Keyu Chen,Li‐Yuan Zhu,Jianwu Wang,Wenhe Xie,Yu Deng,Lingxiao Xue,Huan Long,Hongping Wan,Jing Ren,Kaiping Yuan,Wei Wang,Qunyan Yao,Dongyuan Zhao,Xiaodong Chen,Yonghui Deng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c16614
摘要

Controllable synthesis of monodisperse porous metal oxide semiconductor (MOS) nanospheres with uniform size and a tailored chemical environment is highly desired in the compatible manufacturing of high-performance nanodevices. However, the lack of an effective synthesis method has been a crucial challenge due to the uncontrollable hydrolysis rate of precursors and insufficient coassembly driving force. Herein, an active colloidal polymer-directing method is proposed for the facile synthesis of uniform functionalized mesoporous MOS nanospheres, such as mesoporous SnO2 nanospheres with different single-atom modifications (SA/mSnO2). This synthesis method features the utilization of single-atom-modified mesoporous polydopamine nanospheres as the intermediate, whose phenolic hydroxyl and imine groups enable the formation of the SnO2 skeleton and stabilization of SA, respectively. A library of stable gas-sensing inks is prepared based on the obtained SA/mSnO2 nanospheres, enabling wafer-scale fabrication of sensing layers on microelectromechanical systems chips through high-speed printing. These as-fabricated SA/mSnO2 sensors exhibit tailored selectivity due to different single-atom modifications, high sensitivity (5.6 times higher than that of commercial sensors), and excellent device-to-device consistency. Furthermore, by integrating different SA/mSnO2 nanodevices into sensor arrays, an advanced intelligent olfactory system is produced and further integrated into an automated guided vehicle, enabling the autonomous identification and transport of low-concentration leaked chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一完成签到,获得积分20
1秒前
高高树叶完成签到,获得积分10
2秒前
大山完成签到,获得积分10
2秒前
why发布了新的文献求助10
3秒前
3秒前
541完成签到 ,获得积分10
4秒前
ZhaoW发布了新的文献求助10
4秒前
yaoyh_gc完成签到,获得积分10
5秒前
XCL发布了新的文献求助10
5秒前
小二郎应助xr采纳,获得10
6秒前
6秒前
Conccuc完成签到,获得积分10
6秒前
沉静胜发布了新的文献求助10
6秒前
7秒前
浮游应助科研通管家采纳,获得10
9秒前
sevenhill应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
噼里啪啦发布了新的文献求助10
9秒前
9秒前
月蚀六花发布了新的文献求助10
10秒前
why完成签到,获得积分10
11秒前
sule完成签到,获得积分10
12秒前
虚心青梦发布了新的文献求助10
13秒前
zhangjw完成签到 ,获得积分10
14秒前
sule发布了新的文献求助10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
赘婿应助斯文冷梅采纳,获得10
17秒前
StevenFong完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478271
求助须知:如何正确求助?哪些是违规求助? 4579994
关于积分的说明 14371755
捐赠科研通 4508300
什么是DOI,文献DOI怎么找? 2470593
邀请新用户注册赠送积分活动 1457382
关于科研通互助平台的介绍 1431307