Light-Induced Palladium(IV)–Carbon Bond Homolysis

作者
Linda De Marchi,Maxime Tricoire,Luca Demonti,Oleh Stetsiuk,Angus Shephard,Lhoussain Khrouz,Salauat R. Kiraev,Olivier Maury,Thayalan Rajeshkumar,Laurent Maron,Grégory Danoun,Grégory Nocton
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (44): 40603-40615
标识
DOI:10.1021/jacs.5c12686
摘要

Palladium chemistry has been widely studied since the 1950s, particularly for cross-coupling reactions. It facilitates breaking C-X bonds through oxidative addition and forming C-C bonds through reductive elimination. These 2 electrons' elementary steps are the key features to construct highly elaborated molecules and explain their exceptional versatility. While Pd(0)/Pd(II) catalytic cycles are well understood, the behavior of Pd(IV) alkyl complexes is less studied, particularly due to their instability. Here, we report the synthesis and characterization by X-ray diffraction, solid-state magnetism, and 1H NMR of several Pd(Alkyl)4 fragments, which demonstrate unusual stability thanks to a Cp*2Yb(bipym) fragment (Cp* is for pentamethylcyclopentadienyl and bipym for 2,2'bipyrimidine). As such, the Cp*2Yb(bipym)Pd(Me)3(R) (R = Me, 3Me; Et, 3Et) complexes have a room temperature half-life of more than 17 h, while the one-electron reduction of 3Me leads to a Pd(Me)4 fragment, 3@crypt, which does not degrade over time. This unusual stability allowed us to study the original reactivities of these Pd(Alkyl)4 fragments other than classical reductive elimination. Thus, we report the first light-induced Pd(IV)-C bond homolysis, which leads to the formation of alkyl radicals. The Cp*2Yb(bipym)PdMe4 complex, 3Me, reacts under irradiation at 370 nm to form the Cp*2Yb(4Me,4H-bipym)PdMe4, 4, and the Cp*2Yb(4Me,4H-bipym)PdMe2, 5, in which the methyl radical couples with the bipym radical. The mechanism of this peculiar reaction has been determined by DFT. Similar reactivity with 3@crypt leads to the formation of a free methyl radical, as shown by EPR reaction trapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的咖啡完成签到,获得积分10
刚刚
1秒前
853225598完成签到,获得积分10
1秒前
liaoyoujiao完成签到,获得积分10
1秒前
fanch1122完成签到,获得积分10
2秒前
2秒前
GGbond完成签到,获得积分10
2秒前
3秒前
FBH一号机发布了新的文献求助10
3秒前
NIKI0807完成签到,获得积分10
3秒前
hahada完成签到,获得积分10
3秒前
3秒前
嘿嘿发布了新的文献求助10
4秒前
乖拉完成签到,获得积分10
4秒前
成就的凡松完成签到,获得积分10
4秒前
4秒前
4秒前
所所应助小蓝采纳,获得10
4秒前
zombie完成签到,获得积分10
5秒前
wannna发布了新的文献求助10
5秒前
悦耳从彤完成签到,获得积分10
5秒前
5秒前
妩媚的舞仙完成签到,获得积分10
5秒前
6秒前
可yi完成签到,获得积分10
6秒前
Running发布了新的文献求助30
6秒前
7秒前
领导范儿应助曹沛岚采纳,获得10
7秒前
时尚寄真完成签到,获得积分10
8秒前
llk完成签到,获得积分10
8秒前
迅速的婷冉完成签到,获得积分10
8秒前
含蓄元冬完成签到 ,获得积分10
8秒前
通讯录三号完成签到 ,获得积分10
8秒前
SciGPT应助HAHA采纳,获得10
8秒前
Qiuju完成签到,获得积分10
9秒前
DreamMaker完成签到,获得积分10
9秒前
Once完成签到,获得积分10
9秒前
大方梦秋完成签到,获得积分10
9秒前
wdm发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482836
求助须知:如何正确求助?哪些是违规求助? 4583525
关于积分的说明 14390528
捐赠科研通 4512908
什么是DOI,文献DOI怎么找? 2473262
邀请新用户注册赠送积分活动 1459272
关于科研通互助平台的介绍 1432886