两性离子
离子交换
电解
膜
催化作用
化学
化学工程
离子
无机化学
材料科学
有机化学
物理化学
生物化学
分子
电极
工程类
电解质
作者
Wenlong Li,Yunxuan Ding,Yilong Zhao,Zhiheng Li,Gaoxin Lin,Linqin Wang,Licheng Sun
标识
DOI:10.1002/ange.202505924
摘要
Abstract The development of efficient nonprecious metal electrocatalysts for industrial anion exchange membrane water electrolysis (AEM‐WE) remains challenging, primarily due to sluggish OH − transfer from the anion exchange membrane (AEM) to catalytic sites, causing H + accumulation and performance degradation. Herein, we developed a zwitterion‐modified NiFe catalyst (z‐NiFe) through gradient soaking, facilitates rapid OH − transfer across the AEM‐electrocatalyst interface, effectively neutralizing the generated H + and enhancing catalytic performance. In‐situ Raman spectroscopy and OH − conductivity measurements reveal an alkaline‐enriched surface environment, which inhibits H + accumulation‐induced chemical corrosion and enhances water oxidation performances. Density functional theory (DFT) analysis demonstrates that zwitterions stabilize adsorbed oxygen during catalysis, and reduce the overpotential of oxygen evolution reaction (OER). The z‐NiFe shows an ultralow Tafel slope (28.5 mV dec −1 ) and high activity (190 mV overpotential at 1000 mA cm −2 ) in 1 M KOH. When integrated into an AEM‐WE system, the z‐NiFe‐catalyzed AEM‐WE device exhibits a low cell voltage of 1.76 V at 1000 mA cm −2 and record‐breaking durability over 14000 h, with a voltage degradation rate of 12.3 µV h −1 , representing a significant advancement in AEM‐WE technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI