已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable Machine Learning Prediction of Polyimide Dielectric Constants: A Feature-Engineered Approach with Experimental Validation

电介质 聚酰亚胺 材料科学 特征(语言学) 人工智能 机器学习 计算机科学 复合材料 光电子学 语言学 哲学 图层(电子)
作者
Xiaojie He,Jiachen Wan,Songyang Zhang,Chenggang Zhang,Peng Xiao,Feng Zheng,Qinghua Lu
出处
期刊:Polymers [MDPI AG]
卷期号:17 (12): 1622-1622 被引量:4
标识
DOI:10.3390/polym17121622
摘要

Low-dielectric polyimides (PIs) have emerged as essential materials for next-generation microelectronics and communication technologies, yet traditional experimental and theoretical calculation methods for acquiring dielectric constant data face challenges in cost, accuracy, and scalability. This study presents a machine learning (ML) framework that combines polymer domain knowledge with advanced data-driven modeling techniques for accurate prediction of PI dielectric constants at 1 kHz. A dataset of 439 PIs was constructed, and 208 molecular descriptors were derived from SMILES-encoded structures. Through rigorous feature engineering—variance filtering, correlation analysis, and recursive feature elimination—10 key descriptors were identified, capturing electronic and polar interaction, surface area, and structural complexity. Five ML algorithms were evaluated, with Gaussian Process Regression (GPR) achieving superior predictive accuracy (test set: R2 = 0.90, RMSE = 0.10). Shapley additive explanations (SHAP) analysis quantifies the contribution of molecular descriptors to PI dielectric constants. By means of SHAP values, it discloses the positive or negative impacts of descriptors on the predictions. Three novel PIs were synthesized for experimental validation, showing strong agreement between predicted and measured dielectric constants (mean percentage deviation: 2.24%). The model demonstrates robust predictions for other structurally similar polymers but reveals a 40% accuracy reduction (R2 = 0.60) in 10 GHz cross-frequency predictions, emphasizing the requirement for multi-frequency training datasets to enhance model generalizability. This work advances the research paradigm of polymer dielectric materials and provides a pathway for the rational design of materials guided by machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w1x2123发布了新的文献求助10
刚刚
酷炫的尔丝完成签到 ,获得积分10
2秒前
优美紫槐发布了新的文献求助10
2秒前
多情的如冰完成签到 ,获得积分10
6秒前
6秒前
jing完成签到,获得积分20
6秒前
7秒前
pf应助科研通管家采纳,获得10
8秒前
pf应助科研通管家采纳,获得10
8秒前
SiriHow应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Liucky完成签到,获得积分0
9秒前
10秒前
黄志伟发布了新的文献求助10
10秒前
wh2740发布了新的文献求助10
12秒前
愉快的远航完成签到,获得积分10
17秒前
17秒前
iNk应助mjnrhw采纳,获得20
18秒前
子子发布了新的文献求助10
18秒前
jiose完成签到,获得积分10
18秒前
Liucky发布了新的文献求助10
18秒前
21秒前
21秒前
SUNNYONE完成签到 ,获得积分10
22秒前
6wdhw完成签到 ,获得积分10
22秒前
23秒前
Wind应助努力学习的阿文采纳,获得10
24秒前
oldblack完成签到,获得积分10
25秒前
愉快的远航发布了新的文献求助100
28秒前
甜蜜舞蹈完成签到 ,获得积分10
29秒前
30秒前
斯文败类应助longer采纳,获得10
30秒前
Hello应助失眠妙竹采纳,获得10
31秒前
勤恳冰淇淋完成签到 ,获得积分10
35秒前
可乐桶完成签到,获得积分10
38秒前
感动背包发布了新的文献求助10
39秒前
Leeee完成签到,获得积分10
40秒前
43秒前
43秒前
西早完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5834149
求助须知:如何正确求助?哪些是违规求助? 6086484
关于积分的说明 15589837
捐赠科研通 4952845
什么是DOI,文献DOI怎么找? 2669079
邀请新用户注册赠送积分活动 1614460
关于科研通互助平台的介绍 1569250