生物膜
生物传感器
计算生物学
转录因子
生物
抄写(语言学)
化学
微生物学
细菌
生物化学
遗传学
基因
语言学
哲学
作者
Yidan Hu,Jian Liu,Aloysius Teng,Yingdan Zhang,Liang Yang,Bin Cao
标识
DOI:10.1021/acssynbio.5c00193
摘要
Biofilms are ubiquitous and have many negative effects, for example, in infections or biocorrosion. Given the critical role of the second messenger cyclic di-GMP (c-di-GMP) in biofilm formation, targeting a reduction in intracellular concentrations of c-di-GMP is believed to be a key aspect in the development of biofilm mitigation strategies. To facilitate this effort, here, we developed a transcription factor (TF)-based biosensor that integrates the TF FleQ from Pseudomonas aeruginosa with a PR-Ppel tandem promoter. The dynamic range of the biosensor was optimized by fine-tuning the TF expression. The biosensor exhibited broad compatibility and effectiveness in detecting decreases in c-di-GMP levels across various biofilm model organisms, including strains lacking FleQ or its homologues, such as Escherichia coli, Shewanella oneidensis, Comamonas testosteroni, and Acinetobacter baumannii, as well as P. aeruginosa containing FleQ. Additionally, we monitored c-di-GMP levels in biofilms formed by P. aeruginosa and S. oneidensis through a ratiometric, image-based quantification method. The methodology used the green fluorescence protein (GFP) as a reporter for c-di-GMP levels and 4',6-diamidino-2-phenylindole (DAPI) or the monomeric red fluorescence protein (mRFP) as the indicator for biofilm biomass. The GFP/DAPI or GFP/mRFP ratio gives effective c-di-GMP per unit of biomass. This TF-based biosensor provides an important tool to study c-di-GMP dynamics, which facilitates efforts in developing biofilm control strategies and understanding regulatory networks for biofilm development.
科研通智能强力驱动
Strongly Powered by AbleSci AI