亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aggregating narratives on oil and gas from opposing advocacy groups: Revealing temporal shifts in narratives through text mining and network analysis

叙述的 政治学 社会学 文学类 艺术
作者
Yutong Si
出处
期刊:Policy Studies Journal [Wiley]
标识
DOI:10.1111/psj.70029
摘要

Abstract Existing Narrative Policy Framework (NPF) research often views policy narratives in isolation. Applying structural topic modeling (STM) and social network analysis (SNA) to social media data, this paper aggregates narratives to reveal the dynamics of narratives used by opposing advocacy groups. It examines how four advocacy groups with different policy stances support or oppose oil and gas development through X (formerly known as Twitter) from 2009 to 2023. STM reveals six prominent narratives associated with different groups. While the pro‐oil and gas groups highlight policy benefits including job creation, energy security, energy independence, and energy sufficiency, the anti‐oil and gas groups focus on policy costs such as air pollution and health threats. Moreover, the narratives have evolved over time. Notably, the pro‐oil and gas advocacy groups have increasingly emphasized energy leadership over job creation overall and have had more outgoing connections during the Obama and Biden presidencies, while the anti‐oil and gas advocacy groups have prominently highlighted wildlife threats and have had more interactions with other actors during the Trump presidency. By incorporating STM and SNA methodologies into the NPF, this analysis expands research on narratives in energy studies and challenges us to consider narratives collectively rather than in isolation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
积极的台灯应助ceeray23采纳,获得20
51秒前
坦率紫菜完成签到,获得积分10
1分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助旷野采纳,获得10
3分钟前
todaay应助自由自在采纳,获得20
3分钟前
4分钟前
Cyber发布了新的文献求助30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
无花果应助科研通管家采纳,获得10
4分钟前
4分钟前
彭于晏应助Cyber采纳,获得30
5分钟前
5分钟前
5分钟前
5分钟前
El发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助El采纳,获得10
5分钟前
善学以致用应助El采纳,获得10
5分钟前
神外魔法师完成签到,获得积分10
6分钟前
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
桃子爱学习完成签到,获得积分10
6分钟前
忧伤的绍辉完成签到 ,获得积分10
6分钟前
7分钟前
Cyber发布了新的文献求助30
7分钟前
Cyber完成签到,获得积分10
7分钟前
7分钟前
HS完成签到,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916640
求助须知:如何正确求助?哪些是违规求助? 3462008
关于积分的说明 10920615
捐赠科研通 3189495
什么是DOI,文献DOI怎么找? 1763013
邀请新用户注册赠送积分活动 853205
科研通“疑难数据库(出版商)”最低求助积分说明 793747