伪装
材料科学
红外线的
衰减
电导
共轭体系
金属
放松(心理学)
雷达
金属有机骨架
纳米技术
化学物理
光电子学
聚合物
凝聚态物理
光学
物理化学
复合材料
冶金
电信
物理
人工智能
心理学
社会心理学
化学
吸附
计算机科学
作者
Yongheng Jin,Junye Cheng,Shang Jiang,X. L. Zou,Yuping Wang,Li Yao,Junjie Guo,Zhoupeng Ren,Qingkui Chen,Zhaosong Zhang,Qing‐Hua Qin,Bin Liu,Renchao Che
标识
DOI:10.1002/adma.202501330
摘要
Abstract π‐conjugated metal‐organic frameworks (MOFs) have emerged as promising candidates for electromagnetic wave (EMW) absorption, owning to their high conductivity and versatile structural tunability. Nevertheless, the effective control over their dielectric properties is a challenge. Herein, the charge carrier migration in π‐conjugated MOFs is harnessed to significantly amplify the electromagnetic response, where the strengthened atom coordination can activate a distinctive conductance‐reinforced attenuation mechanism. This results in finely calibrated EMW absorption characteristics, including a wide effective absorption bandwidth of 6.0 GHz at mere 2 mm, a minimum reflection loss of −46.7 dB at 3.5 mm, and a substantial reduction in radar cross‐section (RCS) up to −23.3 dBm 2 . Furthermore, the seamless integration of the π‐conjugated MOF hybrids within ultraviolet (UV)‐curable 3D printing technology has enabled the fabrication of a stealth‐enabled drone propeller prototype, which exhibits a remarkably low infrared emissivity of 0.205. Additionally, when the propeller device is subjected to a 100 °C heating platform for 30 min, its surface temperature remains below 50 °C, demonstrating exceptional thermal management and stability under elevated temperature conditions. This work underscores the immense potential of these cutting‐edge absorbers to shape the future of advanced military stealth technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI