Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study

心脏宠物 平滑的 人工智能 计算机科学 血流 医学影像学 体素 高斯滤波器 图像噪声 心肌灌注成像 核医学 正电子发射断层摄影术 算法 数学 灌注 医学 计算机视觉 放射科 图像(数学)
作者
Xiaotong Hong,Amirhossein Sanaat,Yazdan Salimi,René Nkoulou,Hossein Arabi,Lijun Lu,Habib Zaidi
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7) 被引量:1
标识
DOI:10.1002/mp.17871
摘要

Cardiac perfusion PET is commonly used to assess ischemia and cardiovascular risk, which enables quantitative measurements of myocardial blood flow (MBF) through kinetic modeling. However, the estimation of kinetic parameters is challenging due to the noisy nature of short dynamic frames and limited sample data points. This work aimed to investigate the errors in MBF estimation in PET through a simulation study and to evaluate different parameter estimation approaches, including a deep learning (DL) method. Simulated studies were generated using digital phantoms based on cardiac segmentations from 55 clinical CT images. We employed the irreversible 2-tissue compartmental model and simulated dynamic 13N-ammonia PET scans under both rest and stress conditions (220 cases each). The simulations covered a rest K1 range of 0.6 to 1.2 and a stress K1 range of 1.2 to 3.6 (unit: mL/min/g) in the myocardium. A transformer-based DL model was trained on the simulated dataset to predict parametric images (PIMs) from noisy PET image frames and was validated using 5-fold cross-validation. We compared the DL method with the voxel-wise nonlinear least squares (NLS) fitting applied to the dynamic images, using either Gaussian filter (GF) smoothing (GF-NLS) or a dynamic nonlocal means (DNLM) algorithm for denoising (DNLM-NLS). Two patients with coronary CT angiography (CTA) and fractional flow reserve (FFR) were enrolled to test the feasibility of applying DL models on clinical PET data. The DL method showed clearer image structures with reduced noise compared to the traditional NLS-based methods. In terms of mean absolute relative error (MARE), as the rest K1 values increased from 0.6 to 1.2 mL/min/g, the overall bias in myocardium K1 estimates decreased from approximately 58% to 45% for the NLS-based methods while the DL method showed a reduction in MARE from 42% to 18%. For stress data, as the stress K1 decreased from 3.6 to 1.2 mL/min/g, the MARE increased from 30% to 70% for the GF-NLS method. In contrast, both the DNLM-NLS (average: 42%) and the DL methods (average: 20%) demonstrated significantly smaller MARE changes as stress K1 varied. Regarding the regional mean bias (±standard deviation), the GF-NLS method had a bias of 6.30% (±8.35%) of rest K1, compared to 1.10% (±8.21%) for DNLM-NLS and 6.28% (±14.05%) for the DL method. For the stress K1, the GF-NLS showed a mean bias of 10.72% (±9.34%) compared to 1.69% (±8.82%) for DNLM-NLS and -10.55% (±9.81%) for the DL method. This study showed that an increase in the tracer uptake rate (K1) corresponded to improved accuracy and precision in MBF quantification, whereas lower tracer uptake resulted in higher noise in dynamic PET and poorer parameter estimates. Utilizing denoising techniques or DL approaches can mitigate noise-induced bias in PET parametric imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayra完成签到,获得积分10
1秒前
星星发布了新的文献求助10
1秒前
1秒前
MG_XSJ完成签到,获得积分10
1秒前
Lucas应助任斯采纳,获得30
2秒前
wind发布了新的文献求助10
2秒前
AA完成签到,获得积分10
3秒前
大气成风发布了新的文献求助10
3秒前
无情科研狗完成签到,获得积分10
3秒前
read发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
乐乐乐乐乐乐应助呆呆采纳,获得10
5秒前
DXJ发布了新的文献求助10
5秒前
kong发布了新的文献求助10
6秒前
jason完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
科研通AI2S应助桂花乌龙采纳,获得10
8秒前
9秒前
修仙中应助Bennyz采纳,获得10
9秒前
尤苏福发布了新的文献求助10
9秒前
张雨兴发布了新的文献求助10
9秒前
Seedless发布了新的文献求助10
9秒前
搜集达人应助yan采纳,获得10
10秒前
兴奋大船发布了新的文献求助30
10秒前
英吉利25发布了新的文献求助10
11秒前
缓慢的中蓝完成签到,获得积分10
12秒前
黄橙子发布了新的文献求助10
12秒前
12秒前
loen完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
大气成风完成签到,获得积分10
14秒前
hhh完成签到,获得积分10
14秒前
怕黑雨梅发布了新的文献求助10
15秒前
mitty完成签到 ,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266