Identifying individuals at clinical high risk for psychosis using a battery of tasks sensitive to symptom mechanisms

精神病 电池(电) 心理学 精神科 临床心理学 认知心理学 功率(物理) 物理 量子力学
作者
Trevor F. Williams,Jim Gold,James A. Waltz,Jason Schiffman,Lauren M. Ellman,Gregory P. Strauss,Elaine F. Walker,Scott W. Woods,Albert R. Powers,Joshua Kenney,Minerva K. Pappu,Philip R. Corlett,Tanya Tran,Steven M. Silverstein,Richard E. Zinbarg,Vijay A. Mittal
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5005564/v1
摘要

The clinical high risk for psychosis (CHR-P) population is important for understanding disease progression and treatment; however, standard approaches to identifying CHR-P individuals are expensive and labor-intensive. Focusing on neurocognitive mechanisms that underlie individual psychosis symptoms (positive, negative, and disorganization) may improve screening and identification. The present study examines whether a behavioral task battery that assays symptom mechanisms can identify CHR-P individuals and predict risk severity. Participants ( N = 621) were recruited from clinics and the community as part of the Computerized Assessment of Psychosis Risk (CAPR) consortium study. Structured clinical interviews, a dimensional risk calculator, and behavioral tasks were administered. Clinical interviews identified the following groups: (a) CHR-P ( n = 273), (b) non-CHR-P individuals with limited psychosis like experiences (PLEs; n = 120), (c) participants with mental disorders and no PLEs (CLN; n = 82), and (d) healthy controls (HC; n = 146). Multinomial logistic regression indicated that the task battery differentiated groups ( p < .001), with utility for identifying CHR-P individuals (Sensitivity = .87, PPV = .51, NPV = .77), though with high false positives that varied based on comparison group (Specificity = .21-.43). Tasks also predicted psychosis risk calculator scores (Adjusted R 2 = .12), with the two unique predictors being positive symptom task variables associated with updating beliefs regarding environmental volatility. Overall, symptom mechanism tasks differentiated CHR-P individuals from control groups, suggesting their potential as novel screening tools. Using tasks to more efficiently identify CHR-P individuals (e.g., enrich samples), may lower barriers and identify individuals that may otherwise be missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙佳婷发布了新的文献求助10
1秒前
金蛋蛋完成签到 ,获得积分10
3秒前
一一发布了新的文献求助10
3秒前
3秒前
Orange应助明芬采纳,获得10
4秒前
六尺巷完成签到,获得积分10
4秒前
hotongue发布了新的文献求助30
4秒前
5秒前
张张发布了新的文献求助10
5秒前
MC番薯应助李大壮采纳,获得10
5秒前
白三烯小童鞋完成签到,获得积分10
5秒前
领导范儿应助耍酷的碧琴采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
LaTeXer应助科研通管家采纳,获得30
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
科研通AI5应助灼灼朗朗采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
許能完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
11秒前
斯文败类应助一一采纳,获得10
12秒前
FLOR完成签到,获得积分10
12秒前
在水一方完成签到,获得积分0
13秒前
13秒前
lalala完成签到,获得积分10
13秒前
急需文献开题的研一肿瘤学牛马完成签到,获得积分10
13秒前
巧克力手印完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751416
求助须知:如何正确求助?哪些是违规求助? 4096942
关于积分的说明 12675670
捐赠科研通 3809520
什么是DOI,文献DOI怎么找? 2103259
邀请新用户注册赠送积分活动 1128428
关于科研通互助平台的介绍 1005349