亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-based prediction of organ involvement in Sjogren’s syndrome using labial gland biopsy whole-slide images

医学 人工智能 接收机工作特性 深度学习 机器学习 活检 卷积神经网络 内科学 病理 计算机科学
作者
Yong Ren,Wenqi Xia,Jiayun Wu,Zheng Yang,Ye Jiang,Ya Wen,Qiuquan Guo,Jieruo Gu,Jun Yang,Jun Luo,Qing Lv
出处
期刊:Clinical Rheumatology [Springer Science+Business Media]
标识
DOI:10.1007/s10067-025-07518-5
摘要

Abstract Objectives This study aimed to develop a deep learning-based model to predict the risk of high-risk extra-glandular organ involvement (HR-OI) in patients with Sjogren’s syndrome (SS) using whole-slide images (WSI) from labial gland biopsies. Methods We collected WSI data from 221 SS patients. Pre-trained models, including ResNet50, InceptionV3, and EfficientNet-B5, were employed to extract image features. A classification model was constructed using multi-instance learning and ensemble learning techniques. Results The ensemble model achieved high area under the receiver operating characteristic (ROC) curve values on both internal and external validation sets, indicating strong predictive performance. Moreover, the model was able to identify key pathological features associated with the risk of HR-OI. Conclusions This study demonstrates that a deep learning-based model can effectively predict the risk of HR-OI in SS patients, providing a novel basis for clinical decision-making. Key Points 1. What is already known on this topic? • Sjogren’s syndrome (SS) is a chronic autoimmune disease affecting the salivary and lacrimal glands. • Accurate prediction of high-risk extra-glandular organ involvement (HR-OI) is crucial for timely intervention and improved patient outcomes in SS. • Traditional methods for HR-OI prediction rely on clinical data and lack objectivity. 2. What this study adds? • This study proposes a novel deep learning-based model using whole-slide images (WSI) from labial gland biopsies for predicting HR-OI in SS patients. • Our model utilizes pre-trained convolutional neural networks (CNNs) and a Vision Transformer (ViT) module to extract informative features from WSI data. • The ensemble model achieves high accuracy in predicting HR-OI, outperforming traditional methods. • The model can identify key pathological features in WSI data associated with HR-OI risk. 3. How this study might affect research, practice or policy? • This study provides a novel and objective approach for predicting HR-OI in SS patients, potentially leading to improved clinical decision-making and personalized treatment strategies. • Our findings encourage further investigation into the role of deep learning and WSI analysis in SS diagnosis and risk stratification. • The development of a non-invasive and objective diagnostic tool based on WSI analysis could benefit clinical practice and inform policy decisions regarding patient care for SS.The development of a non-invasive and objective diagnostic tool based on WSI analysis could benefit clinical practice and inform policy decisions regarding patient care for SS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI2S应助宋丽薇采纳,获得10
11秒前
rrrrwq发布了新的文献求助10
15秒前
CipherSage应助rrrrwq采纳,获得10
28秒前
hamburger完成签到 ,获得积分10
33秒前
Carolyn完成签到,获得积分10
41秒前
44秒前
尔信完成签到 ,获得积分10
45秒前
如意小海豚完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
bdfrjinnb完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
zhq发布了新的文献求助10
2分钟前
多情幻竹发布了新的文献求助10
2分钟前
2分钟前
David完成签到,获得积分10
2分钟前
科研通AI5应助多情幻竹采纳,获得10
2分钟前
不配.应助尤奥毅采纳,获得20
2分钟前
3分钟前
dyl给dyl的求助进行了留言
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
小新小新完成签到 ,获得积分10
3分钟前
decade发布了新的文献求助10
3分钟前
3分钟前
3分钟前
领导范儿应助decade采纳,获得10
3分钟前
七街完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
Friday完成签到,获得积分10
4分钟前
xiaofeixia完成签到 ,获得积分10
4分钟前
souther完成签到,获得积分0
5分钟前
5分钟前
璐璐侠发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4222656
求助须知:如何正确求助?哪些是违规求助? 3755805
关于积分的说明 11806868
捐赠科研通 3418805
什么是DOI,文献DOI怎么找? 1876376
邀请新用户注册赠送积分活动 929952
科研通“疑难数据库(出版商)”最低求助积分说明 838341