Methods reflect values: Evaluating the shortcomings of the average for measuring population well-being.

心理学 社会心理学 人口 统计 人口学 数学 社会学
作者
Sofia L Panasiuk,Anthony McCanny,Felix Cheung
出处
期刊:Journal of Personality and Social Psychology [American Psychological Association]
标识
DOI:10.1037/pspp0000549
摘要

As governments and institutions embrace subjective well-being as a policy outcome, aggregating well-being in a population has become commonplace. The default method used to aggregate population well-being is taking the arithmetic mean (average). However, using average well-being as a key performance indicator, while useful, can omit morally relevant information, like the extent of suffering and inequality. We examine three alternative methods for aggregating life satisfaction, grounded in the ethical theories of: prioritarianism (a weighted average that prioritizes improvements at the bottom of the scale), sufficientarianism (the proportion of respondents answering above a "suffering" threshold), and egalitarianism (the degree of inequality) and compare them to the average. Toward this end, we used nationally representative data from 3,035,971 participants across 148 countries drawn from the 2005 to 2022 Gallup World Poll and the 1981-2021 World Values Survey. We found that the distribution of life satisfaction deviated significantly from a normal distribution in all countries, suggesting that using the mean and standard deviation cannot adequately capture the full distribution. After re-ranking countries according to the degree of life satisfaction inequality, we found that 56 countries deviated by at least 20 ranks compared to their average life satisfaction rankings. Finally, we observed that 9%-46% of the time, increases in average well-being at the country level were accompanied by increasing suffering and inequality. Our findings show the downside of using the average and offer alternatives that are aligned with promoting equitable well-being growth. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
忧心的洙完成签到,获得积分10
6秒前
科目三应助马薄函采纳,获得10
6秒前
mikey完成签到,获得积分10
7秒前
minglinzi完成签到,获得积分10
8秒前
lili完成签到 ,获得积分10
8秒前
深水鱼发布了新的文献求助10
8秒前
jackscu应助yjercou采纳,获得10
9秒前
科研通AI5应助果汁鱼采纳,获得10
11秒前
drzh发布了新的文献求助20
11秒前
12秒前
LLL完成签到 ,获得积分10
12秒前
14秒前
师霸发布了新的文献求助10
17秒前
17秒前
归尘应助执葵采纳,获得10
18秒前
马薄函完成签到,获得积分10
18秒前
吱吱发布了新的文献求助10
20秒前
Hui完成签到,获得积分10
21秒前
马薄函发布了新的文献求助10
21秒前
21秒前
勤劳的富完成签到 ,获得积分10
23秒前
冷傲天川发布了新的文献求助10
24秒前
Sunny完成签到,获得积分10
24秒前
小蘑菇应助mingjie采纳,获得10
24秒前
zzy完成签到 ,获得积分10
25秒前
25秒前
科研小白发布了新的文献求助20
25秒前
nnnn发布了新的文献求助10
27秒前
大个应助张好难采纳,获得10
27秒前
28秒前
28秒前
Fei发布了新的文献求助10
31秒前
白白发布了新的文献求助10
31秒前
小志完成签到,获得积分10
32秒前
111发布了新的文献求助10
32秒前
复杂鼠标发布了新的文献求助10
34秒前
wuyuzegang应助白白采纳,获得20
36秒前
WTT发布了新的文献求助10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122738
求助须知:如何正确求助?哪些是违规求助? 3660622
关于积分的说明 11587158
捐赠科研通 3361823
什么是DOI,文献DOI怎么找? 1847216
邀请新用户注册赠送积分活动 911727
科研通“疑难数据库(出版商)”最低求助积分说明 827597