The role of uranyl complex decomposition and redox conditions in the precipitation of hydrothermal uranium deposits: Insights from chlorite mineralogy and geochemistry in the Shazhou uranium deposit, Xiangshan, SE China

绿泥石 铀矿 地质学 黑云母 地球化学 热液循环 铀矿石 铀酰 白云母 黄铁矿 矿物 矿物学 化学 材料科学 石英 古生物学 有机化学 地震学 冶金
作者
Ji-Qiang Cui,Shui‐Yuan Yang,Shao‐Yong Jiang,Hao Wang,Ruoxi Zhang,Xiang-Sheng Tang,Yongjie Yan
出处
期刊:Geological Society of America Bulletin [Geological Society of America]
被引量:2
标识
DOI:10.1130/b36737.1
摘要

Uranium precipitation involves the decomposition of uranyl complexes and the reduction of hexavalent uranium, which can occur sequentially or simultaneously within one redox reaction. The redox condition of hydrothermal fluid plays a vital role in controlling the migration and precipitation of uranium in hydrothermal uranium deposits. However, little attention has been paid to the role of uranyl complex decomposition in uranium precipitation. In this study, chlorite mineralogy and geochemistry were examined to clarify the process of uranium precipitation in the Shazhou deposit, Xiangshan uranium orefield, Southeast China. Based on comprehensive petrographic and mineral chemistry studies of chlorites obtained from altered granite porphyries and uranium ores, five types of chlorites were identified: (1) chlorite present in the form of pseudomorphous biotite, which was produced by the hydrothermal alteration of biotite in rocks that underwent hematitization and chloritization (Chl-I); (2) chlorite filling the cleavage cracks in biotite in rocks that underwent hematitization and chloritization (Chl-II); (3) chlorite occurring in pyrite veins (Chl-III); (4) chlorite intergrown with pitchblende in ore veins (Chl-IV); and (5) chlorite occurring in calcite veins (Chl-V). Chlorite geothermometry revealed that the formation temperatures of the five types of chlorites ranged from 219 °C to 254 °C. Mineral chemistry analyses revealed that the five types of chlorites formed in a reductive fluid environment, where the oxygen fugacity at different stages is similar, with log fO2 values ranging from −41.6 to −39.1. Uranium precipitation started only in stage Chl-IV. The examination of the mineral assemblage revealed that the ore-forming fluid was rich in F−, HPO32−, and CO32−. Comprehensive investigation of chemistry and physicochemical conditions of the ore-forming fluid revealed that oxidized uranium (UO22+) could be complexed with HPO42− and F−, and uranyl phosphate and the uranyl fluoride complexes were the main uranium species when uranium precipitation and the decomposition occurred at stage Chl-IV. However, the assessment of oxygen fugacity of the solution equilibria between the UO2(s) and the uranyl phosphate and uranyl fluoride complexes revealed that the reducibility of the fluid favoring the reduction of uranyl ions (UO22+) to U4+ was insufficient to reduce the uranyl phosphate and uranyl fluoride complexes. This indicates that the breakup of uranyl phosphate and the uranyl fluoride complexes to release uranyl ions should occur first at stage Chl-IV, reducing uranyl ions to U4+, and leading to uranium precipitation. Hence, the decomposition of uranyl complexes played an important role in uranium precipitation. With the increase in pH, uranyl phosphate and the uranyl fluoride complexes gradually decomposed and became reducible. Moreover, the decrease in ligand concentration was conducive to the decomposition of uranyl phosphate and the uranyl fluoride complexes. During the formation of the Shazhou deposit, the fluid boiling process induced the loss of volatiles, such as CO2, CH4, HF, and H2S, leading to an increase in pH and decrease in HPO42−, F−, and CO32− concentrations in the fluid. These factors also led to the decomposition of uranyl fluoride and the uranyl phosphate complexes and the precipitation of fluorapatite and calcite. Uranium was then reduced by the action of Fe2+ and S− (pyrite) from a hexavalent to a tetravalent, and finally, uranium was precipitated to form uranium ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
守望阳光1完成签到,获得积分10
刚刚
漓漓子发布了新的文献求助30
1秒前
4秒前
pluto应助甜美无剑采纳,获得10
5秒前
8秒前
科研通AI5应助悦耳的雨兰采纳,获得10
9秒前
10秒前
CodeCraft应助11122采纳,获得10
10秒前
10秒前
11秒前
12秒前
13秒前
深情安青应助mujin采纳,获得50
13秒前
14秒前
Harssi发布了新的文献求助10
14秒前
研友_LMg3PZ完成签到,获得积分10
14秒前
15秒前
吕耀炜发布了新的文献求助10
16秒前
Carmen发布了新的文献求助10
16秒前
16秒前
jungwoo123发布了新的文献求助10
16秒前
Lven发布了新的文献求助10
17秒前
shihui发布了新的文献求助10
17秒前
17秒前
18秒前
FashionBoy应助秋天不回来采纳,获得10
18秒前
19秒前
平常月光发布了新的文献求助10
19秒前
20秒前
Ccc发布了新的文献求助30
20秒前
Ari_Kun发布了新的文献求助10
21秒前
细心嚓茶完成签到,获得积分10
21秒前
酷波er应助安静成威采纳,获得10
22秒前
bkagyin应助哈哈采纳,获得10
22秒前
jungwoo123完成签到,获得积分10
24秒前
24秒前
25秒前
Harssi发布了新的文献求助10
25秒前
桐桐应助Wency采纳,获得30
26秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241