Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review

计算机科学 作物产量 领域(数学) 产量(工程) 粮食安全 农业工程 机器学习 农业 数据科学 人工智能 数学 地理 农学 工程类 生物 考古 冶金 材料科学 纯数学
作者
Abhasha Joshi,Biswajeet Pradhan,Shilpa Gite,Subrata Chakraborty
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (8): 2014-2014
标识
DOI:10.3390/rs15082014
摘要

Reliable and timely crop-yield prediction and crop mapping are crucial for food security and decision making in the food industry and in agro-environmental management. The global coverage, rich spectral and spatial information and repetitive nature of remote sensing (RS) data have made them effective tools for mapping crop extent and predicting yield before harvesting. Advanced machine-learning methods, particularly deep learning (DL), can accurately represent the complex features essential for crop mapping and yield predictions by accounting for the nonlinear relationships between variables. The DL algorithm has attained remarkable success in different fields of RS and its use in crop monitoring is also increasing. Although a few reviews cover the use of DL techniques in broader RS and agricultural applications, only a small number of references are made to RS-based crop-mapping and yield-prediction studies. A few recently conducted reviews attempted to provide overviews of the applications of DL in crop-yield prediction. However, they did not cover crop mapping and did not consider some of the critical attributes that reveal the essential issues in the field. This study is one of the first in the literature to provide a thorough systematic review of the important scientific works related to state-of-the-art DL techniques and RS in crop mapping and yield estimation. This review systematically identified 90 papers from databases of peer-reviewed scientific publications and comprehensively reviewed the aspects related to the employed platforms, sensors, input features, architectures, frameworks, training data, spatial distributions of study sites, output scales, evaluation metrics and performances. The review suggests that multiple DL-based solutions using different RS data and DL architectures have been developed in recent years, thereby providing reliable solutions for crop mapping and yield prediction. However, challenges related to scarce training data, the development of effective, efficient and generalisable models and the transparency of predictions should be addressed to implement these solutions at scale for diverse locations and crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小智完成签到,获得积分10
2秒前
所所应助ww采纳,获得10
3秒前
不去的新完成签到,获得积分10
3秒前
延小龙发布了新的文献求助10
3秒前
田様应助Frozen Flame采纳,获得30
4秒前
打打应助特来骑采纳,获得10
5秒前
王舍予发布了新的文献求助30
5秒前
5秒前
7秒前
天天快乐应助潜竹采纳,获得10
7秒前
caohuijun发布了新的文献求助10
8秒前
李爱国应助LJQ采纳,获得10
8秒前
Long完成签到,获得积分10
9秒前
神帝大主宰完成签到,获得积分10
9秒前
10秒前
HHZ完成签到,获得积分10
11秒前
little发布了新的文献求助10
11秒前
CY发布了新的文献求助30
11秒前
xiaoju发布了新的文献求助10
13秒前
13秒前
所所应助yss采纳,获得10
13秒前
13秒前
全寻桃完成签到 ,获得积分10
13秒前
科研通AI6应助siyuyu采纳,获得10
14秒前
甜美慕灵完成签到,获得积分10
14秒前
天Q发布了新的文献求助10
15秒前
祝愿完成签到,获得积分10
15秒前
乐乐应助wwee采纳,获得10
15秒前
chujyz完成签到,获得积分10
17秒前
18秒前
糖糖发布了新的文献求助80
18秒前
dorothyhatty关注了科研通微信公众号
18秒前
小蘑菇应助李雨采纳,获得10
18秒前
LJQ发布了新的文献求助10
18秒前
嗷嗷嗷完成签到,获得积分10
18秒前
思源应助asedrf采纳,获得10
18秒前
MesureWu给MesureWu的求助进行了留言
19秒前
所所应助澎鱼盐采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285983
求助须知:如何正确求助?哪些是违规求助? 4438872
关于积分的说明 13819173
捐赠科研通 4320458
什么是DOI,文献DOI怎么找? 2371458
邀请新用户注册赠送积分活动 1367032
关于科研通互助平台的介绍 1330429