Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review

计算机科学 作物产量 领域(数学) 产量(工程) 粮食安全 农业工程 机器学习 农业 数据科学 人工智能 数学 地理 农学 工程类 材料科学 考古 纯数学 冶金 生物
作者
Abhasha Joshi,Biswajeet Pradhan,Shilpa Gite,Subrata Chakraborty
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (8): 2014-2014
标识
DOI:10.3390/rs15082014
摘要

Reliable and timely crop-yield prediction and crop mapping are crucial for food security and decision making in the food industry and in agro-environmental management. The global coverage, rich spectral and spatial information and repetitive nature of remote sensing (RS) data have made them effective tools for mapping crop extent and predicting yield before harvesting. Advanced machine-learning methods, particularly deep learning (DL), can accurately represent the complex features essential for crop mapping and yield predictions by accounting for the nonlinear relationships between variables. The DL algorithm has attained remarkable success in different fields of RS and its use in crop monitoring is also increasing. Although a few reviews cover the use of DL techniques in broader RS and agricultural applications, only a small number of references are made to RS-based crop-mapping and yield-prediction studies. A few recently conducted reviews attempted to provide overviews of the applications of DL in crop-yield prediction. However, they did not cover crop mapping and did not consider some of the critical attributes that reveal the essential issues in the field. This study is one of the first in the literature to provide a thorough systematic review of the important scientific works related to state-of-the-art DL techniques and RS in crop mapping and yield estimation. This review systematically identified 90 papers from databases of peer-reviewed scientific publications and comprehensively reviewed the aspects related to the employed platforms, sensors, input features, architectures, frameworks, training data, spatial distributions of study sites, output scales, evaluation metrics and performances. The review suggests that multiple DL-based solutions using different RS data and DL architectures have been developed in recent years, thereby providing reliable solutions for crop mapping and yield prediction. However, challenges related to scarce training data, the development of effective, efficient and generalisable models and the transparency of predictions should be addressed to implement these solutions at scale for diverse locations and crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanL完成签到,获得积分10
刚刚
1秒前
1秒前
翱翔者完成签到 ,获得积分10
2秒前
Been发布了新的文献求助10
4秒前
莓莓MM完成签到 ,获得积分10
4秒前
任志政完成签到 ,获得积分10
6秒前
xy发布了新的文献求助10
6秒前
高海龙完成签到 ,获得积分10
8秒前
Been完成签到,获得积分10
11秒前
dm11完成签到,获得积分10
12秒前
13秒前
超级的芹菜完成签到 ,获得积分10
14秒前
廖匪发布了新的文献求助10
14秒前
无花果应助麦当劳薯条采纳,获得10
19秒前
科研顺利完成签到,获得积分10
20秒前
20秒前
人文地理cg完成签到,获得积分10
22秒前
Wxxxxx完成签到 ,获得积分10
24秒前
三伏天发布了新的文献求助10
25秒前
研友_LOK59L发布了新的文献求助10
25秒前
25秒前
25秒前
好运大王完成签到,获得积分10
26秒前
陈词滥调完成签到,获得积分10
29秒前
29秒前
领导范儿应助sci采纳,获得10
29秒前
Jane发布了新的文献求助10
31秒前
32秒前
欧阳晨宇发布了新的文献求助10
33秒前
kk星发布了新的文献求助10
35秒前
彭于晏应助LiZhao采纳,获得30
35秒前
wanci应助圈儿多尼采纳,获得10
37秒前
SciGPT应助研友_LOK59L采纳,获得10
37秒前
忙里偷闲发布了新的文献求助10
37秒前
38秒前
38秒前
39秒前
41秒前
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Oxford Picture Dictionary 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320