Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy

医学 队列 逻辑回归 接收机工作特性 观察研究 内科学 随机森林 强的松 机器学习 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Huasong Zeng,Wei Zheng,Chifong Ieong,Huixian Li,Qiongbo Huang,Zichuan Xu,Jinlian Yang,Qianying Liang,Huiying Liang,Xia Gao,Min Huang,Jiali Li
出处
期刊:Pharmacotherapy [Wiley]
卷期号:43 (1): 43-52 被引量:5
标识
DOI:10.1002/phar.2749
摘要

The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms.This was an observational cohort study of patients with pediatric refractory NS.Guangzhou Women and Children's Medical Center between June 2013 and December 2018.203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation.All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2).Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS.The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806).Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shisH发布了新的文献求助10
1秒前
李健的小迷弟应助Dr_Man采纳,获得30
1秒前
要减肥南霜完成签到 ,获得积分10
3秒前
dongdong发布了新的文献求助10
5秒前
BBOOOOOO完成签到,获得积分10
7秒前
科目三应助REBACK采纳,获得10
8秒前
爆米花应助DEAhuan采纳,获得10
8秒前
yuan完成签到,获得积分10
9秒前
和尘同光完成签到,获得积分10
12秒前
14秒前
脑洞疼应助格格采纳,获得10
14秒前
14秒前
瓜瓜叽叽完成签到 ,获得积分20
15秒前
酷波er应助Devoted采纳,获得10
15秒前
小熊饼干完成签到,获得积分10
17秒前
19秒前
昀颂发布了新的文献求助10
19秒前
20秒前
20秒前
Owen应助企鹅采纳,获得10
21秒前
21秒前
21秒前
Mo丶Salah完成签到,获得积分10
22秒前
22秒前
CodeCraft应助dongdong采纳,获得10
23秒前
逸云完成签到,获得积分10
23秒前
24秒前
Jasper应助viva采纳,获得10
25秒前
充电宝应助无心的安青采纳,获得10
25秒前
ACTesla发布了新的文献求助10
25秒前
26秒前
26秒前
陶兜兜发布了新的文献求助20
26秒前
REBACK发布了新的文献求助10
26秒前
27秒前
郑嘻嘻完成签到,获得积分10
28秒前
28秒前
任性茉莉完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840122
求助须知:如何正确求助?哪些是违规求助? 3382299
关于积分的说明 10522291
捐赠科研通 3101736
什么是DOI,文献DOI怎么找? 1708265
邀请新用户注册赠送积分活动 822395
科研通“疑难数据库(出版商)”最低求助积分说明 773250