Dual-Channel Capsule Generative Adversarial Network Optimized with Golden Eagle Optimization for Pediatric Bone Age Assessment from Hand X-Ray Image

人工智能 计算机科学 骨龄 感兴趣区域 阈值 模式识别(心理学) 人工神经网络 计算机视觉 图像(数学) 医学 解剖
作者
J. Jasper Gnana Chandran,R. Karthick,R. Rajagopal,P. Meenalochini
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:37 (02) 被引量:67
标识
DOI:10.1142/s0218001423540010
摘要

Bone age assessment (BAA) is mainly utilized for detecting the growth of pediatrics because a large number of bone diseases occur at young age. Several algorithms related to BAAs were used for detecting the maturity of bones, but it does not provide sufficient accuracy, and also increased the error rate. To deal with these problems, the dual-channel capsule generative adversarial network optimized with Golden eagle optimization (GEO) is proposed in this paper for pediatric BAA from hand X-ray image (DCCGAN-GEO-BAA-HX-ray). Initially, the input hand X-ray imageries are collected from the dataset of Radiological Society of North America (RSNA) pediatric bone age (BA). Then, region of interest (RoI) of input hand X-ray imageries is segmented based on Tsallis entropy-based multilevel 3D Otsu thresholding (TE-3D-Otsu). Here, TE-3D-Otsu method segments the RoI region of wrist, thumb, middle finger, little finger, which enhance the classification accuracy. Moreover, the segmented RoI is given to DCCGAN that predicts the BAA. Generally, the DCCGAN does not reveal any adoption of optimization methods to scale the optimum parameters to ensure accurate classification. Therefore, GEO is used for optimizing the weight parameters of DCCGAN. The proposed DCCGAN-GEO-BAA-HX-ray method is executed in MATLAB and its performance is examined under performance metrics such as accuracy, precision, sensitivity, F-scores, specificity, concordance correlation coefficient (CCC) and computational time. Finally, the proposed DCCGAN-GEO-BAA-HX-ray approach attains 14.68%, 7.142%, 9.23% and 4.65% higher accuracy, 38.18%, 12.02%, 11.56% and 7.59% lower computational time is compared with existing FRCNN-AF-SFO-BAA-HX-ray, DCNN-W-CTO-BAA-HX-ray, CNN-MLP-BAA-HX-ray and CNN-BAA-HX-ray methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
武鑫跃完成签到,获得积分10
刚刚
咖啡豆完成签到,获得积分10
1秒前
1秒前
zhiyuanren完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
3秒前
李健应助谦让的小龙采纳,获得10
3秒前
4秒前
smalldesk完成签到,获得积分10
4秒前
yyy完成签到,获得积分10
4秒前
liuerye发布了新的文献求助10
4秒前
zhiyuanren发布了新的文献求助10
5秒前
珊其林完成签到,获得积分10
5秒前
5秒前
SciGPT应助酷酷的小钟采纳,获得10
5秒前
潮汐发布了新的文献求助10
6秒前
三三完成签到 ,获得积分10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
屈狒狒完成签到,获得积分10
7秒前
YE完成签到,获得积分20
7秒前
8秒前
轻松的烤鸡完成签到,获得积分10
8秒前
8秒前
9秒前
可爱的函函应助hahaha采纳,获得10
9秒前
9秒前
Jasper应助小蚂蚁采纳,获得10
9秒前
Doraemon完成签到,获得积分10
10秒前
yuxiazhengye发布了新的文献求助10
10秒前
珊其林发布了新的文献求助10
11秒前
亮山火马完成签到,获得积分10
12秒前
12秒前
共享精神应助zzf采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593281
求助须知:如何正确求助?哪些是违规求助? 4679223
关于积分的说明 14808834
捐赠科研通 4643607
什么是DOI,文献DOI怎么找? 2534406
邀请新用户注册赠送积分活动 1502418
关于科研通互助平台的介绍 1469329