MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control

强化学习 计算机科学 交叉口(航空) 概化理论 信号(编程语言) 人工智能 多智能体系统 功能(生物学) 机器学习 工程类 航空航天工程 数学 进化生物学 生物 统计 程序设计语言
作者
Liwen Zhu,Peixi Peng,Zongqing Lu,Yonghong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11570-11584 被引量:15
标识
DOI:10.1109/tkde.2022.3232711
摘要

Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city. Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent. However, there are still several challenges that may limit its large-scale application in the real world. On the one hand, the policy of the current traffic signal is often heavily influenced by its neighbor agents, and the coordination between the agent and its neighbors needs to be considered. Hence, the control of a road network composed of multiple traffic signals is naturally modeled as a multi-agent system, and all agents’ policies need to be optimized simultaneously. On the other hand, once the policy function is conditioned on not only the current agent's observation but also the neighbors’, the policy function would be closely related to the training scenario and cause poor generalizability because the agents in various scenarios often have heterogeneous neighbors. To make the policy learned from a training scenario generalizable to new unseen scenarios, a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method is proposed to learn the decentralized policy for each intersection that considers neighbor information in a latent way. Specifically, we formulate the policy learning as a meta-learning problem over a set of related tasks, where each task corresponds to traffic signal control at an intersection whose neighbors are regarded as the unobserved part of the state. Then, a learned latent variable is introduced to represent the task's specific information and is further brought into the policy for learning. In addition, to make the policy learning stable, a novel intrinsic reward is designed to encourage each agent's received rewards and observation transition to be predictable only conditioned on its own history. Extensive experiments conducted on CityFlow demonstrate that the proposed method substantially outperforms existing approaches and shows superior generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
102755完成签到,获得积分10
刚刚
张博完成签到,获得积分10
刚刚
研友_LX66qZ完成签到,获得积分10
刚刚
Sweet完成签到,获得积分10
刚刚
刚刚
xiaobai完成签到,获得积分10
刚刚
博修发布了新的文献求助10
1秒前
雪霓裳发布了新的文献求助10
1秒前
1秒前
1秒前
哈拉斯发布了新的文献求助10
1秒前
科研通AI5应助清爽的老四采纳,获得10
1秒前
2秒前
赘婿应助六月采纳,获得10
2秒前
HMF发布了新的文献求助10
2秒前
什玖完成签到 ,获得积分10
3秒前
愉快的过客关注了科研通微信公众号
3秒前
Song0558发布了新的文献求助10
3秒前
ZhouYW应助jessie采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
笑笑完成签到 ,获得积分10
3秒前
陈豆豆完成签到 ,获得积分10
4秒前
长情乘云发布了新的文献求助10
4秒前
yyyyxxxg完成签到,获得积分10
4秒前
仿若浮云完成签到,获得积分10
4秒前
胥阶英发布了新的文献求助10
5秒前
我是老大应助Gavin采纳,获得10
5秒前
奮斗发布了新的文献求助10
5秒前
张博发布了新的文献求助10
5秒前
wanci应助Kate采纳,获得10
5秒前
尤有完成签到,获得积分20
5秒前
深情安青应助牛油果果采纳,获得30
6秒前
求助完成签到,获得积分10
7秒前
逸龙完成签到,获得积分10
7秒前
8秒前
111发布了新的文献求助10
8秒前
冷艳的芯完成签到,获得积分10
8秒前
小周发布了新的文献求助10
8秒前
MW完成签到,获得积分20
8秒前
李健的小迷弟应助KYG采纳,获得10
8秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578