The impact of violating the independence assumption in meta-analysis on biomarker discovery

药物基因组学 错误发现率 荟萃分析 生物标志物发现 概化理论 生物标志物 计算机科学 计算生物学 稳健性(进化) 统计能力 独立性(概率论) 生物信息学 统计 计量经济学 数据挖掘 数据科学 生物 医学 蛋白质组学 数学 遗传学 内科学 基因
作者
Farnoosh Abbas-Aghababazadeh,Wei Xu,Benjamin Haibe-Kains
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fgene.2022.1027345
摘要

With rapid advancements in high-throughput sequencing technologies, massive amounts of “-omics” data are now available in almost every biomedical field. Due to variance in biological models and analytic methods, findings from clinical and biological studies are often not generalizable when tested in independent cohorts. Meta-analysis, a set of statistical tools to integrate independent studies addressing similar research questions, has been proposed to improve the accuracy and robustness of new biological insights. However, it is common practice among biomarker discovery studies using preclinical pharmacogenomic data to borrow molecular profiles of cancer cell lines from one study to another, creating dependence across studies. The impact of violating the independence assumption in meta-analyses is largely unknown. In this study, we review and compare different meta-analyses to estimate variations across studies along with biomarker discoveries using preclinical pharmacogenomics data. We further evaluate the performance of conventional meta-analysis where the dependence of the effects was ignored via simulation studies. Results show that, as the number of non-independent effects increased, relative mean squared error and lower coverage probability increased. Additionally, we also assess potential bias in the estimation of effects for established meta-analysis approaches when data are duplicated and the assumption of independence is violated. Using pharmacogenomics biomarker discovery, we find that treating dependent studies as independent can substantially increase the bias of meta-analyses. Importantly, we show that violating the independence assumption decreases the generalizability of the biomarker discovery process and increases false positive results, a key challenge in precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ymyuan完成签到,获得积分20
刚刚
nihao完成签到,获得积分10
1秒前
Ybaci7完成签到,获得积分10
1秒前
半山完成签到,获得积分10
1秒前
orixero应助msy采纳,获得10
2秒前
2秒前
LITTLE被发布了新的文献求助10
3秒前
Xinxxx发布了新的文献求助10
3秒前
小甜恬发布了新的文献求助10
3秒前
余悸完成签到 ,获得积分10
3秒前
ymyuan发布了新的文献求助20
3秒前
欲目完成签到 ,获得积分10
4秒前
飞飞发布了新的文献求助10
4秒前
充电宝应助疗伤烧肉粽采纳,获得10
4秒前
liz完成签到 ,获得积分10
7秒前
天天快乐应助ormita采纳,获得10
7秒前
852应助生动的如花采纳,获得10
7秒前
子车茗应助醒醒采纳,获得30
8秒前
xixi关注了科研通微信公众号
8秒前
8秒前
yoowt完成签到,获得积分10
9秒前
抹茶麻薯发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
无歧完成签到,获得积分10
11秒前
12秒前
坦率夕阳完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
超级野狼完成签到,获得积分20
15秒前
学习猴发布了新的文献求助10
15秒前
16秒前
wu完成签到,获得积分10
16秒前
Clara凤发布了新的文献求助30
16秒前
平常的毛豆应助魔幻若血采纳,获得10
17秒前
finerain7发布了新的文献求助10
17秒前
wwl发布了新的文献求助20
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393