Compressive strength of concrete containing furnace blast slag; optimized machine learning-based models

磨细高炉矿渣 抗压强度 硅酸盐水泥 骨料(复合) 人工神经网络 支持向量机 水泥 混凝土性能 机器学习 熔渣(焊接) 计算机科学 材料科学 岩土工程 工程类 复合材料
作者
Mahdi Kioumarsi,Hamed Dabiri,Amirreza Kandiri,Visar Farhangi
出处
期刊:Cleaner engineering and technology [Elsevier BV]
卷期号:13: 100604-100604 被引量:56
标识
DOI:10.1016/j.clet.2023.100604
摘要

Replacing Ordinary Portland Cement (OPC) with industrial waste like Ground Granulated Blast Furnace Slag (GGBFS) has been proven to have remarkable benefits regarding the mechanical properties of concrete and the environment. The main objectives of this research, as a result, are to (a) develop a generalized, accurate, and optimized Machine Learning (ML)-based model for predicting the compressive strength of concrete incorporating GGBFS and (b) propose equations for easier calculation of the compressive strength of concrete containing GGBFS. To this aim, various ML-based methods, namely Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-nearest Neighbors (KNN), and Artificial Neural Network (ANN) were considered for predicting the compressive strength of concrete containing GGBFS. An extensive dataset including 625 results of experimental studies was collected from international peer-reviewed publications. The dataset was divided into two sub-datasets: the training dataset (85%), used to train the models on the relationship between input and output parameters, and the testing dataset (15%), used to evaluate the accuracy of the models. The most influential parameters, including ordinary Portland cement, GGBFS grade, GGBFS to cement ratio, water, coarse aggregate, fine aggregate, and testing age, were considered as the input variables for proposing prediction models. The predicted and actual values were compared in each model. The accuracy of the models was also compared using common performance metrics (RMSE, MSE, MAE, MAPE, R, and R2-score) and Taylor diagram. Eventually, a sensitivity analysis was conducted at the end of the study to explore the influence of GGBFS on cement ratio and GGBFS grade on concrete compressive strength, and consequently, equations were suggested based on the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jialin完成签到,获得积分10
1秒前
焰火青年发布了新的文献求助30
3秒前
无花果应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
PageSeo2应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
高山流水应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
HR112应助科研通管家采纳,获得10
6秒前
ei123应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
细致且入微完成签到,获得积分10
7秒前
wwww完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
joeqin完成签到,获得积分10
10秒前
傢誠发布了新的文献求助30
14秒前
请问发布了新的文献求助10
14秒前
小蜜蜂发布了新的文献求助10
16秒前
沁阳完成签到,获得积分10
17秒前
17秒前
大个应助大兵采纳,获得100
20秒前
ivylyu关注了科研通微信公众号
20秒前
GU完成签到,获得积分20
21秒前
zhenzhen完成签到,获得积分10
21秒前
24秒前
充电宝应助dajiejie采纳,获得10
24秒前
傢誠完成签到,获得积分10
28秒前
30秒前
31秒前
科研通AI5应助windflake采纳,获得30
32秒前
GongSyi完成签到 ,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778003
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215195
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339