Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software

医学 成像体模 图像质量 迭代重建 核医学 计算机辅助设计 放射科 结核(地质) 人工智能 计算机科学 图像(数学) 工程类 古生物学 工程制图 生物
作者
Lidong Yang,H. Liu,Jiajun Han,Shijie Xu,G. Zhang,Q. Wang,Yihui Du,Fan Yang,Xiaomei Zhao,Gaofeng Shi
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:78 (7): 525-531 被引量:11
标识
DOI:10.1016/j.crad.2023.01.006
摘要

AIM

To test the feasibility of ultra-low-dose (ULD) computed tomography (CT) combined with an artificial intelligence iterative reconstruction (AIIR) algorithm for screening pulmonary nodules using computer-assisted diagnosis (CAD).

MATERIALS AND METHODS

A chest phantom with artificial pulmonary nodules was first scanned using the routine protocol and the ULD protocol (3.28 versus 0.18 mSv) to compare the image quality and to test the acceptability of the ULD CT protocol. Next, 147 lung-screening patients were enrolled prospectively, undergoing an additional ULD CT immediately after their routine CT examination for clinical validation. Images were reconstructed with filtered back-projection (FBP), hybrid iterative reconstruction (HIR), the AIIR, and were imported to the CAD software for preliminary nodule detection. Subjective image quality on the phantom was scored using a five-point scale and compared using the Mann–Whitney U-test. Nodule detection using CAD was evaluated for ULD HIR and AIIR images using the routine dose image as reference.

RESULTS

Higher image quality was scored for AIIR than for FBP and HIR at ULD (p<0.001). As reported by CAD, 107 patients were presented with fewer than five nodules on routine dose images and were chosen to represent the challenging cases at an early stage of pulmonary disease. Among such, the performance of nodule detection by CAD on ULD HIR and AIIR images was 75.2% and 92.2% of the routine dose image, respectively.

CONCLUSION

Combined with AIIR, it was feasible to use an ULD CT protocol with 95% dose reduction for CAD-based screening of pulmonary nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助结实夜雪采纳,获得10
1秒前
企鹅完成签到,获得积分10
1秒前
典雅的路灯完成签到 ,获得积分10
2秒前
zhangsan发布了新的文献求助10
2秒前
尔尔发布了新的文献求助10
3秒前
梦在远方完成签到 ,获得积分10
4秒前
义气猫咪发布了新的文献求助10
5秒前
6秒前
金角大王发布了新的文献求助10
6秒前
爱听歌的寄云完成签到,获得积分10
7秒前
7秒前
8秒前
大地完成签到,获得积分10
8秒前
善学以致用应助无铭采纳,获得10
8秒前
9秒前
烟花应助钮黎昕采纳,获得10
9秒前
vvvvvv应助沉静的歌曲采纳,获得10
10秒前
11秒前
Lina发布了新的文献求助10
11秒前
研友_8QxN1Z完成签到,获得积分10
12秒前
眼睛大的乐儿完成签到,获得积分10
12秒前
舒适的书雪完成签到,获得积分20
12秒前
温柔的沉鱼完成签到,获得积分10
12秒前
13秒前
结实夜雪发布了新的文献求助10
13秒前
15秒前
科目三应助AAAA采纳,获得10
15秒前
能量球发布了新的文献求助10
16秒前
PaoPao发布了新的文献求助10
17秒前
17秒前
israr完成签到,获得积分10
17秒前
笑点低的靳完成签到,获得积分10
17秒前
海里游发布了新的文献求助10
17秒前
顾矜应助沉静的歌曲采纳,获得10
18秒前
焦焦留下了新的社区评论
18秒前
19秒前
今后应助曾馨慧采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820413
求助须知:如何正确求助?哪些是违规求助? 3363363
关于积分的说明 10422332
捐赠科研通 3081743
什么是DOI,文献DOI怎么找? 1695230
邀请新用户注册赠送积分活动 814963
科研通“疑难数据库(出版商)”最低求助积分说明 768748