已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of word embedding models on text analytics in deep learning environment: a review

计算机科学 文字嵌入 人工智能 深度学习 自然语言处理 情绪分析 词(群论) 嵌入 分析 代表(政治) 机器学习 数据科学 语言学 哲学 政治 政治学 法学
作者
Deepak Suresh Asudani,Naresh Kumar Nagwani,Pradeep Singh
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (9): 10345-10425 被引量:98
标识
DOI:10.1007/s10462-023-10419-1
摘要

The selection of word embedding and deep learning models for better outcomes is vital. Word embeddings are an n-dimensional distributed representation of a text that attempts to capture the meanings of the words. Deep learning models utilize multiple computing layers to learn hierarchical representations of data. The word embedding technique represented by deep learning has received much attention. It is used in various natural language processing (NLP) applications, such as text classification, sentiment analysis, named entity recognition, topic modeling, etc. This paper reviews the representative methods of the most prominent word embedding and deep learning models. It presents an overview of recent research trends in NLP and a detailed understanding of how to use these models to achieve efficient results on text analytics tasks. The review summarizes, contrasts, and compares numerous word embedding and deep learning models and includes a list of prominent datasets, tools, APIs, and popular publications. A reference for selecting a suitable word embedding and deep learning approach is presented based on a comparative analysis of different techniques to perform text analytics tasks. This paper can serve as a quick reference for learning the basics, benefits, and challenges of various word representation approaches and deep learning models, with their application to text analytics and a future outlook on research. It can be concluded from the findings of this study that domain-specific word embedding and the long short term memory model can be employed to improve overall text analytics task performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槑槑完成签到,获得积分20
1秒前
3秒前
3秒前
shaun完成签到,获得积分10
4秒前
王海凤完成签到,获得积分20
5秒前
6秒前
Dr.Du发布了新的文献求助10
8秒前
云yun发布了新的文献求助10
9秒前
庄冬丽发布了新的文献求助10
10秒前
13秒前
15秒前
16秒前
16秒前
shuo0976发布了新的文献求助10
17秒前
科研通AI5应助务实的宛采纳,获得10
18秒前
JamesPei应助云yun采纳,获得30
19秒前
haobhaobhaob发布了新的文献求助10
20秒前
Dr.Du完成签到,获得积分10
22秒前
100发布了新的文献求助30
22秒前
填充物完成签到 ,获得积分10
22秒前
烟花应助韩同鑫采纳,获得10
23秒前
精明冰蓝完成签到,获得积分10
23秒前
lbyscu完成签到 ,获得积分10
24秒前
27秒前
gui完成签到,获得积分10
27秒前
顾矜应助hrj采纳,获得10
27秒前
28秒前
29秒前
29秒前
31秒前
haobhaobhaob完成签到,获得积分10
33秒前
pengchen发布了新的文献求助10
35秒前
韩同鑫发布了新的文献求助10
36秒前
37秒前
38秒前
Hello应助mkljl采纳,获得10
41秒前
42秒前
粿粿一定行完成签到 ,获得积分10
42秒前
倩倩发布了新的文献求助10
44秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782466
求助须知:如何正确求助?哪些是违规求助? 3327919
关于积分的说明 10233716
捐赠科研通 3042869
什么是DOI,文献DOI怎么找? 1670261
邀请新用户注册赠送积分活动 799662
科研通“疑难数据库(出版商)”最低求助积分说明 758904