Impact of word embedding models on text analytics in deep learning environment: a review

计算机科学 文字嵌入 人工智能 深度学习 自然语言处理 情绪分析 词(群论) 嵌入 分析 代表(政治) 机器学习 数据科学 语言学 政治 哲学 法学 政治学
作者
Deepak Suresh Asudani,Naresh Kumar Nagwani,Pradeep Singh
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (9): 10345-10425 被引量:98
标识
DOI:10.1007/s10462-023-10419-1
摘要

The selection of word embedding and deep learning models for better outcomes is vital. Word embeddings are an n-dimensional distributed representation of a text that attempts to capture the meanings of the words. Deep learning models utilize multiple computing layers to learn hierarchical representations of data. The word embedding technique represented by deep learning has received much attention. It is used in various natural language processing (NLP) applications, such as text classification, sentiment analysis, named entity recognition, topic modeling, etc. This paper reviews the representative methods of the most prominent word embedding and deep learning models. It presents an overview of recent research trends in NLP and a detailed understanding of how to use these models to achieve efficient results on text analytics tasks. The review summarizes, contrasts, and compares numerous word embedding and deep learning models and includes a list of prominent datasets, tools, APIs, and popular publications. A reference for selecting a suitable word embedding and deep learning approach is presented based on a comparative analysis of different techniques to perform text analytics tasks. This paper can serve as a quick reference for learning the basics, benefits, and challenges of various word representation approaches and deep learning models, with their application to text analytics and a future outlook on research. It can be concluded from the findings of this study that domain-specific word embedding and the long short term memory model can be employed to improve overall text analytics task performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李明完成签到,获得积分10
1秒前
xiaochuan完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
1秒前
HOXXXiii完成签到,获得积分10
2秒前
zhou发布了新的文献求助10
2秒前
Who1990发布了新的文献求助10
2秒前
2秒前
2秒前
爆米花应助巴巴布拉博采纳,获得10
2秒前
心灵美的元彤完成签到,获得积分10
2秒前
pyyyyyy完成签到,获得积分10
3秒前
共享精神应助温乘云采纳,获得10
4秒前
莉莉发布了新的文献求助10
4秒前
Una发布了新的文献求助10
5秒前
ShawnFusion发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科研通AI6应助zhou采纳,获得10
6秒前
大气奄完成签到,获得积分10
6秒前
珍吖伢完成签到,获得积分20
7秒前
科研小达人完成签到,获得积分20
7秒前
ss给ss的求助进行了留言
8秒前
温暖富完成签到,获得积分10
8秒前
goldenfleece发布了新的文献求助10
8秒前
科研通AI6应助FKZoz采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
小西完成签到,获得积分10
9秒前
10秒前
life完成签到,获得积分10
10秒前
SSE完成签到,获得积分10
10秒前
Lucas应助xiuxue424采纳,获得10
10秒前
ENSIL发布了新的文献求助10
10秒前
ShawnFusion完成签到,获得积分10
10秒前
11秒前
ZHU完成签到,获得积分10
11秒前
JamesPei应助飛鳥采纳,获得10
11秒前
reuslee完成签到,获得积分10
11秒前
balabala完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987